Parents please note that all academic packets are mailed home to scholars but are also available on our website at www.brighterchoice.org under the heading “Remote Learning.” All academic packet assignments are mandatory and must be completed by all scholars. Online assignments are to be completed if you have access to technology. If you are unable to access packets online, every Wednesday between the hours of 8:00am-11:00am someone will be at our school to provide a hard copy. We thank you greatly for your continued support!
Math Scope and Sequence

Week 10

June 1st – June 5th

<table>
<thead>
<tr>
<th>Date</th>
<th>Standards</th>
<th>Description of Packet Assignment (30 mins)</th>
<th>Online Assignment</th>
</tr>
</thead>
</table>
| 6.1 | 3.MD.2 | Scholars will decompose a kilogram to reason about the size and weight of 1 kilogram, 100 grams, 10 grams, and 1 gram and read weight on a scale. | **YouTube**
1) Decomposing Kilograms into Grams
https://www.youtube.com/watch?v=WylAxJ356xQ

Khan Academy
2) Understanding Mass: Kg and g

Study
3) Grams and Kilograms

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Challenge: Ten bags of sugar weigh 1 kilogram. How many kilograms do 50 bags of sugar weigh?</th>
</tr>
</thead>
</table>
| 6.2 | 3.MD.2 | Scholars will develop estimation strategies by reasoning about the weight in kilograms of a series of familiar objects to establish mental benchmark measures. | **YouTube**
1) Estimate and measure mass
https://www.youtube.com/watch?v=VejoVPri9kg

Khan Academy
2) Estimation of Mass in g and Kg
https://www.youtube.com/watch?v=aWIcncTpiC4

SpashLearn
3) Estimation game (weight)
https://www.splashlearn.com/measurements-games

IXL
4) Which metric unit is appropriate?
https://www.ixl.com/math/grade-3/which-metric-unit-is-appropriate |

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Challenge: Ms. Neville put a 1-kilogram bag of flour on one side of a pan balance. How many 100-gram bags of flour does she need to put on the other pan to balance the scale?</th>
</tr>
</thead>
</table>
| 6.3 | 3.MD.2 | Scholars will solve one-step word problems involving metric weights within 100 and estimate to reason about solutions. | **IXL**
1) Measurement word problems
https://www.ixl.com/math/grade-3/measurement-word-problems

Khan Academy
2) Word problems with mass (video)

3) Word problems with mass (practice)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Challenge: A bicycle weighs 8 kilograms. The delivery truck is almost full but can hold 40 kilograms more. How many more bicycles can the truck hold?</th>
</tr>
</thead>
</table>

IXL
1) Measurement word problems
https://www.ixl.com/math/grade-3/measurement-word-problems

Khan Academy
2) Word problems with mass (video)

3) Word problems with mass (practice)
| 6.4 | **3.MD.2** | Scholars will solve word problems involving liters and milliliters. Challenge: Ms. Morton buys 20 liters of paint to paint her house. She divided the paint in half. How many liters of paint are in each bucket? | **YouTube**
1) **Decomposing a liter in milliliters**
https://www.youtube.com/watch?v=rVjEEKXvUbU

2) **Understanding volume (liters)**

| 6.5 | **3.MD.2** | Scholars will estimate and measure liquid volume in liters and milliliters using the vertical number line and reason about capacity. Challenge: Juan pours a container with 450 milliliters of lemon juice into a bottle with 785 milliliters of water to make lemonade. How much lemonade did Juan make? | **YouTube**
1) **Volume and capacity**
https://www.youtube.com/watch?v=GKC8ohI8qE |
1. Decompose 1 kilogram into groups of 100 grams.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td></td>
</tr>
<tr>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td></td>
</tr>
</tbody>
</table>

2. Decompose 100 grams into groups of 10 grams.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td></td>
</tr>
<tr>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td></td>
</tr>
</tbody>
</table>

3. Decompose 10 grams into groups of 1 gram.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td></td>
</tr>
<tr>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td>_____ g</td>
<td></td>
</tr>
</tbody>
</table>

1 Kilogram (kg) = 1,000 grams (g)

- 1,000 g x 1 = 1,000 g
- 100 g x 10 = 1,000 g
- 10 g x 100 = 1,000 g
4. Read each digital scale. Write each weight using the word \textit{kilogram} or \textit{gram} for each measurement.

\begin{itemize}
\item \textbf{3 kilograms}
\item \textbf{907 g}
\item \textbf{11 kg}
\item \textbf{1 kg}
\end{itemize}

\textbf{Challenge:} Ten bags of sugar weigh 1 kilogram. How many kilograms do 50 bags of sugar weigh?
Name: ______________________________

Date: June 2, 2020

BCCS-Boys

Parent Signature: __
(Parent signature is proof that parent reviewed work with scholar)

Parent/Scholar Notes: These are notes that can/should be shared with scholar’s teacher

<table>
<thead>
<tr>
<th>Today my scholar was successful with….</th>
<th>Today my scholar struggled with understanding…</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Circle the correct unit of weight for each estimation.

1. A box of cereal weighs about 350 ____________________ (grams / kilograms).
2. A watermelon weighs about 3 (grams / kilograms).
3. A postcard weighs about 6 (grams / kilograms).
5. A bicycle weighs about 15 (grams / kilograms).
6. A lemon weighs about 58 (grams / kilograms).
7. An orange weighs about 200 (grams / kilograms).
8. A basketball weighs about 624 (grams / kilograms).
10. A small packet of sugar weighs about 4 (grams / kilograms).
11. A tiger weighs about 190 (grams / kilograms).
12. A cellphone weighs about 800 (grams / kilograms).
13. A bag of apples weighs approximately 1 (gram / kilogram).
Challenge: Ms. Neville put a 1-kilogram bag of flour on one side of a pan balance. How many 100-gram bags of flour does she need to put on the other pan to balance the scale?
Name: ______________________________ Date: June 3, 2020

BCCS-Boys

Parent Signature: ________________________________
(Parent signature is proof that parent reviewed work with scholar)

Parent/Scholar Notes: These are notes that can/should be shared with scholar’s teacher

<table>
<thead>
<tr>
<th>Today my scholar was successful with….</th>
<th>Today my scholar struggled with understanding…</th>
</tr>
</thead>
</table>

Use tape diagrams to model the following problem.

Example: Keiko and her brother Jiro get weighed at the doctor’s office. Keiko weighs 35 kilograms, and Jiro weighs 43 kilograms.

```
\[ \begin{array}{c}
35 \quad 43 \\
\end{array} \]
Keiko and Jiro weigh 78 kilograms.
```

1. Jeremiah and his cousin get weighed at the doctor’s office. Jeremiah weighs 41 kilograms, and his cousin weighs 36 kilograms.

 a. What is Jeremiah and his cousin’s total weight?

 Jeremiah and his cousin weigh ______ kilograms

 b. How much heavier is Jeremiah than his cousin?

 Jeremiah is ______ kilograms heavier than his cousin
Example:

2. Mrs. Blomgren’s grandmother buys carrots at the farm stand. She and her 3 grandchildren equally share the carrots. The total weight of the carrots she buys is shown below.

 a. How many kilograms of carrots will Mrs. Blomgren get?

 b. Mrs. Blomgren uses 2 kilograms of carrots to bake muffins. How many kilograms of carrots does she have left?
3. The weights of 3 fruit baskets are shown below.

<table>
<thead>
<tr>
<th>Basket</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12 kg</td>
</tr>
<tr>
<td>B</td>
<td>8 kg</td>
</tr>
<tr>
<td>C</td>
<td>16 kg</td>
</tr>
</tbody>
</table>

a. Basket _____ is the heaviest.
b. Basket _____ is the lightest.
c. Basket A is __________ kilograms heavier than Basket B.
d. What is the total weight of all three baskets?

4. The weights of a backpack and suitcase are shown below.

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backpack</td>
<td>7 kg</td>
</tr>
<tr>
<td>Suitcase</td>
<td>21 kg</td>
</tr>
</tbody>
</table>

a. How much heavier is the suitcase than the backpack? *(suitcase – backpack)*

 _____ kg - _____ kg = _____ kg

b. What is the total weight of 4 identical backpacks? *(identical = exactly the same)*

 _____ kg X 4= _____ kg OR _____ kg + _____ kg + _____ kg + _____ kg = _____ kg

c. How many backpacks weigh the same as one suitcase?

Challenge: A bicycle weighs 8 kilograms. The delivery truck is almost full but can hold 40 kilograms more. How many more bicycles can the truck hold?
1. The vet prescribes Mrs. Blomgren’s puppy 5 milliliters of medicine each day for 3 days. How many milliliters of medicine will the puppy take altogether?

The puppy will take _____ mL of medicine altogether.

2. Mrs. McLean pours 3 juice boxes into a bowl to make punch. Each juice box holds 236 milliliters. How much juice does Mrs. McLean pour into the bowl?

Mrs. McLean pours _____ mL of juice into the bowl.
3. Daniel’s fish tank holds 24 liters of water. He uses a 4-liter bucket to fill the tank. How many buckets of water are needed to fill the tank?

_____ buckets of water are needed to fill the tank.

4. Mrs. Capone buys 15 liters of paint to paint her house. She pours the paint equally into 3 buckets. How many liters of paint are in each bucket?

There are _____ liters of paint in each bucket.

Challenge: A bicycle weighs 8 kilograms. The delivery truck is almost full but can hold 40 kilograms more. How many more bicycles can the truck hold?
1. How much liquid is in each container?

<table>
<thead>
<tr>
<th>6L</th>
<th>6L</th>
<th>6L</th>
<th>6L</th>
</tr>
</thead>
<tbody>
<tr>
<td>5L</td>
<td>5L</td>
<td>5L</td>
<td>5L</td>
</tr>
<tr>
<td>4L</td>
<td>4L</td>
<td>4L</td>
<td>4L</td>
</tr>
<tr>
<td>3L</td>
<td>3L</td>
<td>3L</td>
<td>3L</td>
</tr>
<tr>
<td>2L</td>
<td>2L</td>
<td>2L</td>
<td>2L</td>
</tr>
<tr>
<td>1L</td>
<td>1L</td>
<td>1L</td>
<td>1L</td>
</tr>
</tbody>
</table>

3 L

An estimate is not an exact amount. Choose the measurement that is closest to the fill line.

2. Estimate the amount of liquid in each container to the nearest hundred milliliters.

<table>
<thead>
<tr>
<th>1000mL</th>
<th>1000mL</th>
<th>1000mL</th>
<th>1000mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>900mL</td>
<td>900mL</td>
<td>900mL</td>
<td>900mL</td>
</tr>
<tr>
<td>800mL</td>
<td>800mL</td>
<td>800mL</td>
<td>800mL</td>
</tr>
<tr>
<td>700mL</td>
<td>700mL</td>
<td>700mL</td>
<td>700mL</td>
</tr>
<tr>
<td>600mL</td>
<td>600mL</td>
<td>600mL</td>
<td>600mL</td>
</tr>
<tr>
<td>500mL</td>
<td>500mL</td>
<td>500mL</td>
<td>500mL</td>
</tr>
<tr>
<td>400mL</td>
<td>400mL</td>
<td>400mL</td>
<td>400mL</td>
</tr>
<tr>
<td>300mL</td>
<td>300mL</td>
<td>300mL</td>
<td>300mL</td>
</tr>
<tr>
<td>200mL</td>
<td>200mL</td>
<td>200mL</td>
<td>200mL</td>
</tr>
<tr>
<td>100mL</td>
<td>100mL</td>
<td>100mL</td>
<td>100mL</td>
</tr>
</tbody>
</table>

400 mL
Example:
The chart below shows the capacity of 4 barrels.

<table>
<thead>
<tr>
<th>Barrel</th>
<th>Capacity in Liters</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>75 liters</td>
</tr>
<tr>
<td>B</td>
<td>68 liters</td>
</tr>
<tr>
<td>C</td>
<td>96 liters</td>
</tr>
<tr>
<td>D</td>
<td>52 liters</td>
</tr>
</tbody>
</table>

- a. Label the number line to show the capacity of each barrel. Barrel A has been done for you.
- b. Which barrel has the greatest capacity?
- c. Which barrel has the smallest capacity?
- d. Ben buys a barrel that holds about 70 liters. Which barrel did he most likely buy? Explain why.
- e. Use the number line to find how many more liters Barrel C can hold than Barrel B.

3. Ms. Sherman is comparing the capacity of gas tanks in different size cars. Use the chart below to answer the questions.

<table>
<thead>
<tr>
<th>Size of Car</th>
<th>Capacity in Liters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td>74</td>
</tr>
<tr>
<td>Medium</td>
<td>57</td>
</tr>
<tr>
<td>Small</td>
<td>42</td>
</tr>
</tbody>
</table>

- a. Label the number line to show the capacity of each gas tank. The medium car has been done for you.
- b. Which car’s gas tank has the greatest capacity? _____ L
- c. Which car’s gas tank has the smallest capacity? _____________
- d. Ms. Sherman’s car has a gas tank capacity of about 60 liters. Which car from the chart has about the same capacity as Ms. Sherman’s car? ______________
- e. Use the number line to find how many more liters the large car’s tank holds than the small car’s tank.

Challenge: Juan pours a container with of lemon juice 450 milliliters into a bottle with 785 milliliters of water to make lemonade. How much lemonade did Juan make?
Parents please note that all academic packets are mailed home to scholars but are also available on our website at www.brighterchoice.org under the heading “Remote Learning.” All academic packet assignments are mandatory and must be completed by all scholars. Online assignments are to be completed if you have access to technology. If you are unable to access packets online, every Wednesday between the hours of 8:00am-11:00am someone will be at our school to provide a hard copy. We thank you greatly for your continued support!
Math Scope and Sequence

Week 11

Date	**Standards**	**Description of Packet Assignment**	**Online Assignment**
6.8 | **3.MD.2** Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. | Scholars will solve mixed word problems involving all four operations with liters, and milliliters and reason about capacity. Challenge: Oziah squeezes 140 milliliters of lemon juice to make 1 liter of lemonade. How many milliliters of lemon juice are in 2 liters of lemonade? | **Khan Academy**
--- | **3.NBT.1** Use place value understanding to round whole numbers to the nearest 10 or 100. 3.MD.1 Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram. | Scholars will round 2-digit measurements (minutes, mL, L, kg, g, etc.) to the nearest 10 or 100. Challenge: Mr. Banks goes grocery shopping at about 11:30 a.m. Which of the four times below could be the actual time Mr. Banks went shopping? a. 10:27, b. 11:15, c. 11:43, d. 11:27 | **YouTube**
1) Rounding to the nearest 10 https://www.youtube.com/watch?v=Yiu9NuelKkO
Study
--- | **3.NBT.2** Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. | Scholars will add measurements (mL, L, kg, g, etc.) using the standard algorithm to compose larger units once. Josiah and Nymir buy a small bag of popcorn and a pretzel at the movie theater. The pretzel weighs 63 grams more than the popcorn. What is the weight of the pretzel? | **LearnZillion**
Study
--- | | |

Math Scope and Sequence

Week 11

June 8th – June 12th
| 6.11 | **3.NBT.2** | Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. | Scholars will subtract measurements including three-digit minuends with zeros in the tens or ones place.
Challenge: Aaron buys 714 grams of grapes at the market on Tuesday. On Thursday, he buys 345 grams of grapes. How many more grams of grapes did Aaron buy on Tuesday than on Thursday? |

| 6.12 | **3.OA.4** | Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ? = 48$, $5 = _ \div 3$, $6 \times 6 = ?$ | Scholars will multiply and divide with familiar facts using a letter to represent the unknown.
Challenge: Mrs. Howard used a total of 28 cups of flour to bake some bread. She used 4 cups of flour for each loaf of bread. How many loaves of bread did she bake? Represent the problem using multiplication and division sentences and a letter for the unknown. Then, solve the problem.
_____ \times _____ = _____
_____ \div _____ = _____ |

| 6.XL | **IXL** | 1) Subtract numbers up to three digits
https://www.ixl.com/math/grade-3/subtract-numbers-up-to-three-digits |

| | **Khan Academy** | 2) Methods for subtracting 2-digit numbers
https://www.khanacademy.org/math/arithmetic/arith-review-add-subtract/arith-review-regrouping-3-digit/v/methods-for-subtracting-3-digit-numbers |

| | **Khan Academy** | 1) Unknowns in multiplication and division (video)
2) Unknown in multiplication (practice)
3) Unknown in division (practice)
Name: ________________________________ Date: June 8, 2020

BCCS-Boys

Parent Signature: ___

(College: __________________)

(Parent signature is proof that parent reviewed work with scholar)

<table>
<thead>
<tr>
<th>Parent/Scholar Notes: These are notes that can/should be shared with scholar’s teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Today my scholar was successful with....</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Example: The total weight in grams of a can of tomatoes and a jar of baby food is shown to the right.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. The jar of baby food weighs 113 grams. How much does the can of tomatoes weigh?</td>
<td>67 g</td>
</tr>
<tr>
<td>b. How much more does the can of tomatoes weigh than the jar of baby food?</td>
<td>558 g</td>
</tr>
</tbody>
</table>

1. The weight of a pen in grams is shown to the right.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. What is the total weight of 10 pens? (_ \times 6 = _) pens</td>
<td></td>
</tr>
<tr>
<td>b. An empty box weighs 82 grams. What is the total weight of a box of 10 pens? (82 + _ = _ g)</td>
<td></td>
</tr>
</tbody>
</table>

2. The total weight of an apple, lemon, and banana in grams is shown to the right.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. If the apple and lemon together weigh 317 grams, what is the weight of the banana?</td>
<td></td>
</tr>
<tr>
<td>b. If we know the lemon weighs 68 grams less than the banana, how much does the lemon weigh?</td>
<td></td>
</tr>
</tbody>
</table>
The capacities of three cups are shown below.

<table>
<thead>
<tr>
<th>Cup</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>160</td>
</tr>
<tr>
<td>B</td>
<td>280</td>
</tr>
<tr>
<td>C</td>
<td>237</td>
</tr>
</tbody>
</table>

a. Find the total capacity of the three cups. \(\text{(add)} \)

b. Brandon drinks exactly half of Cup B. How many milliliters are left in Cup B? \(2 \times _ = 280 \text{mL} \text{ OR } 280 \text{mL} \div 2 = _ \)

c. Ms. Schmidt drinks 3 cups of tea from Cup A. How much tea does she drink in total? \(160 + 160 + 160 = _ \)

Challenge: Oziah squeezes 140 milliliters of lemon juice to make 1 liter of lemonade. How many milliliters of lemon juice are in 2 liters of lemonade?
1. The weight of a golf ball is shown below.

![Image of a scale with a golf ball on it]

a. The golf ball weighs _______________. \textit{(exact amount)}

b. Round the weight of the golf ball to the nearest ten grams. Model your thinking on the number line.

c. The golf ball weighs about _______________. \textit{(estimate or approximate amount)}

d. Explain how you used the halfway point on the number line to round to the nearest ten grams.

\[\text{(example explanation)} \]

2. Complete the chart.

<table>
<thead>
<tr>
<th>Object</th>
<th>Measurement (in cm)</th>
<th>The object measures between (which two tens)...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of desk</td>
<td>66 cm</td>
<td>60 and 70 cm</td>
</tr>
<tr>
<td>Width of desk</td>
<td>48 cm</td>
<td>_______ and _______ cm</td>
</tr>
<tr>
<td>Width of door</td>
<td>81 cm</td>
<td>_______ and _______ cm</td>
</tr>
</tbody>
</table>
3. Gym class ends at 10:27 a.m. Round the time to the nearest 10 minutes.

Gym class ends at about _____ a.m.

4. Measure the liquid in the beaker to the nearest 10 milliliters.

There are about ________ milliliters in the beaker.

Example:

- a. 32 = 30
- b. 36 = 40

5. 43 = ________

6. 35 = ________

Challenge: Mr. Banks goes grocery shopping at about 11:30 a.m. Which of the four times below could be the actual time Mr. Banks went shopping? Circle one answer.

a. 10:27
b. 11:15
c. 11:43
d. 11:27
1. Find the sums below using the standard algorithm.

 a. \(46\, \text{mL} + 5\, \text{mL} \)

 b. \(46\, \text{mL} + 25\, \text{mL} \)

 c. \(46\, \text{mL} + 125\, \text{mL} \)

 d. \(59\, \text{cm} + 30\, \text{cm} \)

 e. \(509\, \text{cm} + 83\, \text{cm} \)

 f. \(597\, \text{cm} + 30\, \text{cm} \)

 g. \(29\, \text{g} + 63\, \text{g} \)

 h. \(345\, \text{g} + 294\, \text{g} \)

 i. \(480\, \text{g} + 476\, \text{g} \)
Challenge: Josiah and Nymir buy a small bag of popcorn and a pretzel at the movie theater. The pretzel weighs 63 grams more than the popcorn. What is the weight of the pretzel?

___ grams

44 grams
Name: ______________________________ Date: June 11, 2020

BCCS-Boys

Date: ______________________________

College: __________________________

(Parent signature is proof that parent reviewed work with scholar)

Parent/Scholar Notes: These are notes that can/should be shared with scholar’s teacher

<table>
<thead>
<tr>
<th>Today my scholar was successful with....</th>
<th>Today my scholar struggled with understanding...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solve the subtraction problems below.

a. 60 mL – 24 mL

b. 360 mL – 24 mL

c. 360 mL – 224 mL

d. 518 cm – 21 cm

e. 629 cm – 268 cm

f. 938 cm – 440 cm

g. 307 g – 130 g

h. 307 g – 234 g

i. 807 g – 732 g
j. 607 cm – 32 cm
k. 763 g – 82 g
l. 837 km – 645 km

m. 370 L – 46 L
n. 592 cm – 258 cm
o. 803 g – 542 g

Challenge: Aaron buys 714 grams of grapes at the market on Tuesday. On Thursday, he buys 345 grams of grapes. How many more grams of grapes did Aaron buy on Tuesday than on Thursday?
1. Each equation contains a letter representing the unknown. Find the value of the unknowns, and then write the letters that match the answers to solve the riddle.

\[
\begin{align*}
5 \times 4 &= e \\
24 \div i &= 4 \\
32 &= s \times 8 \\
8 &= 80 \div n \\
4 &= 36 \div k \\
8 &= a \div 3
\end{align*}
\]

\[
\begin{align*}
21 \div 3 &= l \\
21 &= c \times 7 \\
8 &= a \div 3 \\
24 \div b &= 12 \\
35 &= 7 \times h
\end{align*}
\]
2. Each equation contains a letter representing the unknown. Find the value of the unknown.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8 \div 2 = n$</td>
<td>$n = 20$</td>
</tr>
<tr>
<td>$3 \times a = 12$</td>
<td>$a = ___$</td>
</tr>
<tr>
<td>$p \times 8 = 40$</td>
<td>$p = ___$</td>
</tr>
<tr>
<td>$18 \div 6 = c$</td>
<td>$c = ___$</td>
</tr>
<tr>
<td>$d \times 4 = 24$</td>
<td>$d = ___$</td>
</tr>
<tr>
<td>$h \div 7 = 5$</td>
<td>$h = ___$</td>
</tr>
<tr>
<td>$6 \times 3 = f$</td>
<td>$f = ___$</td>
</tr>
<tr>
<td>$32 \div y = 4$</td>
<td>$y = ___$</td>
</tr>
</tbody>
</table>

Challenge: Mrs. Howard used a total of 28 cups of flour to bake some bread. She used 4 cups of flour for each loaf of bread. How many loaves of bread did she bake? Represent the problem using multiplication and division sentences and a letter for the unknown. Then, solve the problem.

$$___ \times ___ = ___$$
$$___ \div ___ = ___$$
<table>
<thead>
<tr>
<th>Date</th>
<th>Standards</th>
<th>Description of Packet Assignment (30 mins)</th>
<th>Online Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.16</td>
<td></td>
<td>Scholars will count by units of 7 to multiply and divide. Challenge: Jovan says he can count by seven 6 times to solve 7×6. Brandon says he can count by six 7 times to solve this problem. Who is right? Explain your answer.</td>
<td>Khan Academy 1) Multiply by 7 https://www.khanacademy.org/math/arithmetic-home/multiply-divide/mult-facts/e/multiplying-by-7 SplashLearn 2) Divide by 7 https://www.splashlearn.com/math-skills/third-grade/division-facts/divide-by-7</td>
</tr>
<tr>
<td>6.17</td>
<td>3.OA.9</td>
<td>Scholars will reason about and explain arithmetic patterns using units of 0 and 1 as they relate to multiplication and division. Challenge: Kyri divides 8 by 0 and says it equals 0. Is he correct? Explain why or why not.</td>
<td>Khan Academy 1) Dividing by 1 https://www.khanacademy.org/math/arithmetic-home/multiply-divide/division-facts/e/dividing-by-1 2) Multiplying by 1 or 0 https://www.khanacademy.org/math/arithmetic-home/multiply-divide/mult-facts/e/multiplying-by-0-or-1</td>
</tr>
</tbody>
</table>
| 6.18 | **3.MD.5** | Scholars will understand area as the number of square units it takes to cover a two-dimensional figure.
Challenge: Each square unit. Count to find the area of the rectangle below. Then, draw a different rectangle that has the same area.

| LearnZillion | 1) Use equal squares to find the area
https://learnzillion.com/lesson_plans/7512-use-equal-square-units-to-find-the-area/
2) Find the area of a square or rectangle by counting unit squares
https://learnzillion.com/lesson_plans/5206-find-the-area-of-a-square-or-rectangle-by-counting-unit-squares/ |

| 6.19 | Scholars will find the area of rectangles on a grid and draw a different rectangle with the same area. | KhanAcademy | 1) Area review
https://www.khanacademy.org/math/cc-third-grade-math/imp-geometry/imp-multiply-to-find-area/a/area-rectangles-review
IXL | 2) Multiply to find the area of a rectangle made of unit squares
Name: ______________________________

Date: June 15, 2020

BCCS-Boys

Parent Signature: ______________________________

(Parent signature is proof that parent reviewed work with scholar)

Parent/Scholar Notes: These are notes that can/should be shared with scholar’s teacher

<table>
<thead>
<tr>
<th>Today my scholar was successful with…</th>
<th>Today my scholar struggled with understanding…</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:

6, 12, 18, 24

Complete the multiplication equation that represents the final number in your count-by.

6 × __________ = ________

Complete the division equation that represents your count-by.

________ ÷ 6 = ________

1. **Skip-count by six to fill in the blanks.**

 a. 6, ______, ______

 Complete the multiplication equation that represents the final number in your count-by.

 6 × ______ = ________

 Complete the division equation that represents your count-by.

 ______ ÷ 6 = ________

 b. 6, ______, ______, ______, ______, ______

 Complete the multiplication equation that represents the final number in your count-by.

 6 × ______ = ________

 Complete the division equation that represents your count-by.

 ______ ÷ 6 = ________

 c. 6, ______, ______, ______, ______, ______, ______

 Complete the multiplication equation that represents the final number in your count-by.

 6 × ______ = ________

 Complete the division equation that represents your count-by.

 ______ ÷ 6 = ________

 d. 6, ______, ______, ______, ______, ______

 Complete the multiplication equation that represents the final number in your count-by.

 6 × ______ = ________

 Complete the division equation that represents your count-by.

 ______ ÷ 6 = ________
2. Skip-count by six to fill in the blanks. Match each number in the count-by with its multiplication fact.

Challenge: Amere solves 6×9 by adding $48 + 6$. Show how Amere decomposed to multiply. Then, solve.
1. Skip-count by seven to fill in the blanks below.

 a. 7, _______

 Complete the multiplication equation that represents the final number in your count-by.

 \[7 \times ____ = _____ \]

 Complete the division equation that represents your count-by.

 \[_____ \div 7 = _____ \]

 b. 7, _______, _______

 Complete the multiplication equation that represents the final number in your count-by.

 \[7 \times _____ = _____ \]

 Complete the division equation that represents your count-by.

 \[_____ \div 7 = _____ \]

 c. 7, ______, ______, ______

 Complete the multiplication equation that represents the final number in your count-by.

 \[7 \times _____ = _____ \]

 Complete the division equation that represents your count-by.

 \[_____ \div 7 = _____ \]

 d. 7, _______, _______, _______, _______

 Complete the multiplication equation that represents the final number in your count-by.

 \[7 \times _____ = _____ \]

 Complete the division equation that represents your count-by.

 \[_____ \div 7 = _____ \]

 e. 7, ______, ______, ______, ______, ______

 Complete the multiplication equation that represents the final number in your count-by.

 \[7 \times _____ = _____ \]

 Complete the division equation that represents your count-by.

 \[_____ \div 7 = _____ \]

 f. 7, _______, _______, _______, _______, ______

 Complete the multiplication equation that represents the final number in your count-by.

 \[7 \times _____ = _____ \]

 Complete the division equation that represents your count-by.

 \[_____ \div 7 = _____ \]
3. Skip-count by six to fill in the blanks. Match each number in the count-by with its multiplication fact.

Challenge: Jovan says he can count by seven 6 times to solve 7×6. Brandon says he can count by six 7 times to solve this problem. Who is right? Explain your answer.
Name: ______________________________ Date: June 17, 2020

BCCS-Boys

Parent Signature: ______________________________

College: __________________

(Parent signature is proof that parent reviewed work with scholar)

| Parent/Scholar Notes: These are notes that can/should be shared with scholar’s teacher |
|-----------------|-----------------|
| Today my scholar was successful with... | Today my scholar struggled with understanding... |

Rules for Dividing and Multiplying by 1

<table>
<thead>
<tr>
<th>Rule: when you multiply a number by one, the product is always that number</th>
<th>Rule: dividing a number by 1 does not change the value of that number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples: 4x1 = 4 1x9 = 9 12x1 = 12</td>
<td>Examples: 4÷1 = 4 9÷1 = 9 12÷1 = 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiply by 1 to find the product.</th>
<th>Fill in the blank to find the missing factor.</th>
<th>Fill in the black to find the missing dividend, quotient, or divisor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7x1= _____</td>
<td>_____ x 1 = 10</td>
<td>50 ÷ 1 = _____</td>
</tr>
<tr>
<td>25x1= _____</td>
<td>20x _____ = 20</td>
<td>_____ ÷ 3 = 1</td>
</tr>
<tr>
<td>1x8= _____</td>
<td>9x 1 = _____</td>
<td>4 ÷ _____ = 4</td>
</tr>
<tr>
<td>12x1= _____</td>
<td>_____ x 100 = 100</td>
<td>9 ÷ 1 = _____</td>
</tr>
<tr>
<td>1x100= _____</td>
<td>50x _____ = 50</td>
<td>10 ÷ 10 = _____</td>
</tr>
<tr>
<td>1x34= _____</td>
<td>_____ x 11 = 11</td>
<td>_____ ÷ 1 = 1</td>
</tr>
<tr>
<td>4x1= _____</td>
<td>6x _____ = 6</td>
<td>12 ÷ 1 = _____</td>
</tr>
</tbody>
</table>
Rules for Dividing and Multiplying by 0

<table>
<thead>
<tr>
<th>Rule: when you multiply a number by zero, the product is always 0</th>
<th>Rules: zero divided by any number is zero, EXCEPT for zero because no number can be divided by 0.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples: 0x1 = 0 6x0 = 0 0x100 = 0</td>
<td>Examples: 8 ÷ 0 = undefined 0 ÷ 12 = 0 0 ÷ 4 = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fill in the blanks to find the missing factor or product.</th>
<th>Fill in the black to find the missing dividend, quotient, or divisor. Write “undefined for any number ÷ 0”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x____ = 0</td>
<td>0 ÷ 5 = ______</td>
</tr>
<tr>
<td>0x2 = ______</td>
<td>9 ÷ ______ = undefined</td>
</tr>
<tr>
<td>10x0 = ______</td>
<td>50 ÷ 0 = ______</td>
</tr>
<tr>
<td>5x____ = 0</td>
<td>0 ÷ 18 = ______</td>
</tr>
<tr>
<td>0x100 = ______</td>
<td>0 ÷ 1 = ______</td>
</tr>
<tr>
<td>8x0 = ______</td>
<td>25 ÷ 0 = ______</td>
</tr>
</tbody>
</table>

Challenge: Kyri divides 8 by 0 and says it equals 0. Is he correct? Explain why or why not.
1. Davion uses squares to find the area of a rectangle. His work is shown below.
 a. How many squares did he use to cover the rectangle?

 ![Rectangle Image]

 _____ squares

 b. What is the area of the rectangle in square units? _____ square units

__

2. Each □ is 1 square unit. Which rectangle has the largest area? How do you know?

 ![Rectangle Images]

 Rectangle A
 Rectangle B
 Rectangle C

Rectangle _____ has the largest area. I know this because __

__

__

__
3. Each □ is a square unit. Count to find the area of each rectangle. Then, circle all the rectangles with an area of 12 square units.

Area = _______ square units

Challenge: Each □ is a square unit. Count to find the area of the rectangle below. Then, draw a different rectangle that has the same area in the space provided.

Area = _______ square units
1. Each square is 1 square unit. Write the area of Rectangles A and B. Then, draw a different rectangle with the same area for both A and B in the space provided.

 a. Area = ____________________________

 b. Area = ____________________________

 Hint: when drawing a different rectangle with the same area, list all the factors and choose a different combination of sides.

 Example:

 12 square units → 1, 2, 3, 4, 6, 12
 Possible side lengths: 1x12, 12x1, 2x6, 6x2, 3x4, 4x3
2. Each □ is 1 square unit. Write the area of each rectangle. Then, draw a different rectangle with the same area in the space provided.

Area = _____________________________ square units

Area = _____________________________

Area = _____________________________

Challenge: To find the area of a rectangle, we multiply its length and width. Write 3 different possible side lengths for a triangle with an area of 24 square inches.

<table>
<thead>
<tr>
<th>Triangle 1</th>
<th>Triangle 2</th>
<th>Triangle 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>□□□□□□□□□</td>
<td>□□□□□□□□□</td>
<td>□□□□□□□□□</td>
</tr>
<tr>
<td>□□□□□□□□□</td>
<td>□□□□□□□□□</td>
<td>□□□□□□□□□</td>
</tr>
<tr>
<td>□□□□□□□□□</td>
<td>□□□□□□□□□</td>
<td>□□□□□□□□□</td>
</tr>
</tbody>
</table>

□□□□□□□□□ \[\times\] □□□□□□□□□ = 24 square inches

□□□□□□□□□ \[\times\] □□□□□□□□□ = 24 square inches

□□□□□□□□□ \[\times\] □□□□□□□□□ = 24 square inches
Math Scope and Sequence

June 22nd – June 26th

<table>
<thead>
<tr>
<th>Date</th>
<th>Standards</th>
<th>Description of Packet Assignment (30 mins)</th>
<th>Online Assignment</th>
</tr>
</thead>
</table>
| 6.22 | 3.MD.5 | Scholars will interpret area models to form rectangular arrays. | **YouTube**
1) Area model
https://www.youtube.com/watch?v=mZWk8XNgvG8
Khan Academy
2) Array model to the area model
https://www.khanacademy.org/math/basic-geo/basic-geo-area-and-perimeter/area-formula-intuition/v/transitioning-from-counting-to-multiplying-to-find-area-3rd-grade-khanacademy |
| 6.22 | 3.MD.5 | Scholars will find the area of a rectangle through multiplication of the side lengths. | **IXL**
1) Multiply to find the area
2) Finding the area of a rectangle
https://www.youtube.com/watch?v=CgqgY7a630Q |
| 6.24 | 3.G.2 | Scholars will partition a whole into equal parts and define the equal parts to identify the unit fraction numerically. | **Khan Academy**
1) Numerator and Denominator
2) Identifying unit fractions
https://www.khanacademy.org/math/arithmetic-home/arithmetic-review-fractions/fractions-intro/e/cutting-shapes-into-equal-parts |
| 6.25 | **3.NF.1**
Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the quantity formed by a parts of size 1/b. | Scholars will build and identify non-unit fractions less than one whole from unit fractions.
Challenge: Michael’s dad partitions his garden into 4 equal-sized sections to plant tomatoes, squash, peppers, and cucumbers. What fraction of the garden is available for growing tomatoes? | **YouTube**
1) Build non-unit fractions less than one whole from unit fractions
https://www.youtube.com/watch?v=MFz3pYcCZHM
https://www.youtube.com/watch?v=h9ObSIHbTN4 |
| 6.26 | **3.NF.1**
Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the quantity formed by a parts of size 1/b. | Scholars will identify and represent shaded and non-shaded parts of one whole as fractions.
Challenge: Mr. Mercado ate half of the applesauce in a container. He split the remaining applesauce equally into 2 bowls for his twin boys. Mr. Mercado said, “I ate 1 half, and each of you gets 1 half.” Is Mr. Mercado right? Draw a picture to prove your answer. | **IXL**
1) Match the models and fractions
1. Use a straight edge to draw a grid of equal size squares within the rectangle. Find and label the side lengths. Then, multiply the side lengths to find the area.

- a. Area A: 3 units \times 4 units $= 12$ square units

- b. Area B: ____ units \times ____ units $= ____$ square units

- c. Area C: ____ units \times ____ units $= ____$ square units

- d. Area D: ____ units \times ____ units $= ____$ square units

- e. Area E: ____ unit \times ____ units $= ____$ square units

- f. Area F: ____ units \times ____ units $= ____$ square units
2. Find the area of each rectangular array. Label the side lengths of the matching area model, and write a multiplication equation for each area model.

<table>
<thead>
<tr>
<th>Rectangular Arrays</th>
<th>Area Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3 units × 2 units =</td>
<td>3 units × ______ units</td>
</tr>
<tr>
<td>______ square units</td>
<td>= ______ square units</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rectangular Arrays</th>
<th>Area Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>______ square units</td>
<td>______ units × ______ units = ______ square units</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rectangular Arrays</th>
<th>Area Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>______ square units</td>
<td>______ units × ______ units = ______ square units</td>
</tr>
</tbody>
</table>

Challenge: Ms. Quance wants to replace the square tiles on her bathroom floor. The square tiles are sold in boxes of 8 square tiles. Ms. Quance buys 4 boxes of tiles. Does she have enough to replace all of the tiles, including the tiles under the rug? Explain your answer.
Name: __ Date: June 23, 2020

BCCS-Boys
Parent Signature: __
College: ____________________

(Parent signature is proof that parent reviewed work with scholar)

Parent/Scholar Notes: These are notes that can/should be shared with scholar’s teacher

<table>
<thead>
<tr>
<th>Today my scholar was successful with...</th>
<th>Today my scholar struggled with understanding...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Write a multiplication equation to find the area of each rectangle.

a. **Example**

 ![Rectangle with dimensions 3 cm x 8 cm]

 Area: 24 sq cm

 __3__ × __8__ = __24__ square cm

b.

 ![Rectangle with dimensions 5 cm x 8 cm]

 Area: _____ sq cm

 _____ × _____ = _____

c.

 ![Rectangle with dimensions 6 ft x 6 ft]

 Area: _____ sq ft

 _____ × _____ = _____

d.

 ![Rectangle with dimensions 10 ft x 6 ft]

 Area: _____ sq ft

 _____ × _____ = _____

e.

 ![Rectangle with dimensions 4 ft x 7 ft]

 Area: _____ sq ft

 _____ × _____ = _____

f.

 ![Rectangle with dimensions 8 ft x 7 ft]

 Area: _____ sq ft

 _____ × _____ = _____

g.

 ![Rectangle with dimensions 6 ft x 6 ft]

 Area: _____ sq ft

 _____ × _____ = _____

 _____ × _____ = _____

 _____ × _____ = _____
Example

Ursa draws a rectangle that has side lengths of 9 centimeters and 6 centimeters. What is the area of the rectangle? Explain how you found your answer.

9 cm
6 cm

\[9 \times 6 = 54 \]

The area of the rectangle is 54 sq cm. I found the area by multiplying the side lengths.

2. Ms. Young draws a rectangle that has side lengths of 8 inches and 6 inches. What is the area of the rectangle? Explain how you found your answer.

3. Mr. Moore draws a rectangle that has side lengths of 9 centimeters and 4 centimeters. What is the area of the rectangle? Explain how you found your answer.

Challenge: Ms. Neville and Mr. Confesor both skip-count square units to find the area of the same rectangle. Ms. Neville counts, “3, 6, 9, 12, 15, 18, 21.” Mr. Confesor counts, “7, 14, 21.” Draw what the rectangle might look like, and then label the side lengths and find the area.
Parent/Scholar Notes: These are notes that can/should be shared with scholar’s teacher

<table>
<thead>
<tr>
<th>Today my scholar was successful with...</th>
<th>Today my scholar struggled with understanding...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Fill in the chart. Each image is one whole.

<table>
<thead>
<tr>
<th></th>
<th>Total Number of Equal Parts</th>
<th>Total Number of Equal Parts Shaded</th>
<th>Unit Form</th>
<th>Fraction Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>2</td>
<td>1</td>
<td>1 half</td>
<td>1/2</td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Number of Equal Parts</td>
<td>Total Number of Equal Parts Shaded</td>
<td>Unit Form</td>
<td>Fraction Form</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>g.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Challenge: Ms. Moise cut a 6-meter rope into 3 equal-size pieces to make jump ropes. Mr. Thompson cut a 5-meter rope into 3 equal size pieces to make jump ropes. Which class has longer jump ropes?
Name: _______________________________ Date: June 25, 2020

BCCS-Boys

Parent Signature: _______________________________

College: _______________________________

(Parent signature is proof that parent reviewed work with scholar)

Parent/Scholar Notes: These are notes that can/should be shared with scholar’s teacher

<table>
<thead>
<tr>
<th>Today my scholar was successful with...</th>
<th>Today my scholar struggled with understanding...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Fill in the chart.

<table>
<thead>
<tr>
<th></th>
<th>Total Number of Equal Parts</th>
<th>Total Number of Shaded Equal Parts</th>
<th>Unit Fraction</th>
<th>Fraction Shaded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
<td>4</td>
<td>3</td>
<td>1/4</td>
</tr>
<tr>
<td>a.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram a:

Diagram b:

Diagram c:

Diagram d:

Diagram e:
2. Complete the number sentence. Estimate to partition each strip equally, write the unit fraction inside each unit, and shade the answer.

Example:

\[
\begin{array}{cccc}
3 \text{ fourths} &=& \frac{3}{4} & \quad \frac{1}{4} & \quad \frac{1}{4} & \quad \frac{1}{4} & \quad \frac{1}{4}
\end{array}
\]

a. 2 thirds =

b. 5 sevenths =

c. 3 fifths =

d. 2 eighths =

Challenge: Michael’s mom partitions her garden into 4 equal-sized sections to plant tomatoes, squash, peppers, and cucumbers. What fraction of the garden is available for growing tomatoes?
Match the shape to the amount that is not shaded.

1. □ □ □
 □ □ □
 □ □ □
 □ □ □

2. □ □ □ □ □
 □ □ □

3. □ □ □ □ □
 □ □ □ □ □
 □ □ □ □ □

4. □ □ □ □ □
 □ □ □ □ □
 □ □ □ □ □
 □ □ □ □ □

5. □ □ □ □ □
 □ □ □ □ □
 □ □ □ □ □
 □ □ □ □ □

6. □ □ □ □ □
 □ □ □ □ □
 □ □ □ □ □
 □ □ □ □ □

7. □ □ □ □ □
 □ □ □ □ □
 □ □ □ □ □
 □ □ □ □ □

8. □ □ □ □ □
 □ □ □ □ □
 □ □ □ □ □

- 2 thirds
- 6 sevenths
- 4 fifths
- 8 ninths
- 1 half
- 5 sixths
- 7 eighths
Each strip represents 1 whole. Write a fraction to label the shaded and unshaded parts.

Example:

![Example Diagram]

a.

b.

c.

Challenge: Mr. Mercado ate half of the applesauce in a container. He split the remaining applesauce equally into 2 bowls for his twin boys. Mr. Mercado said, “I ate 1 half, and each of you gets 1 half.” Is Mr. Mercado right? Draw a picture to prove your answer.