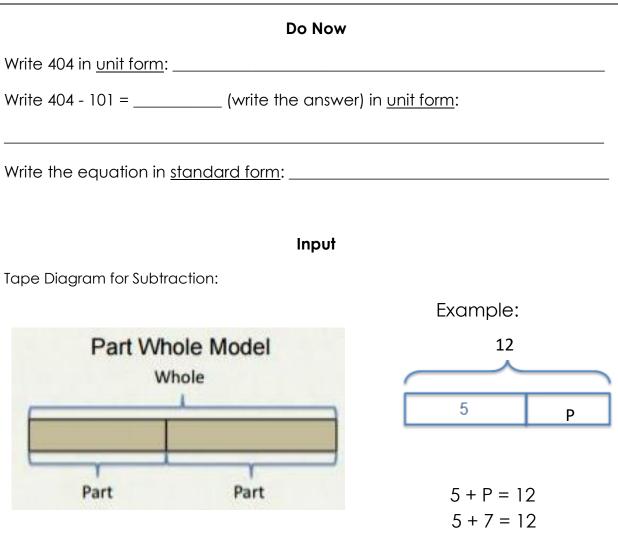
Name:			
_			

College:

4th Grade Math Hybrid Learning Packet Week of:

<u>October 21th – October 27th</u>



Wednesday

Name:	Octob	er 21, 2020
BCCSG	William Smith	Spelman

Lesson 13

Learning Target: I can use place value understanding to decompose to smaller units once using the standard subtraction algorithm, and apply the algorithm to solve word problems using tape diagrams.

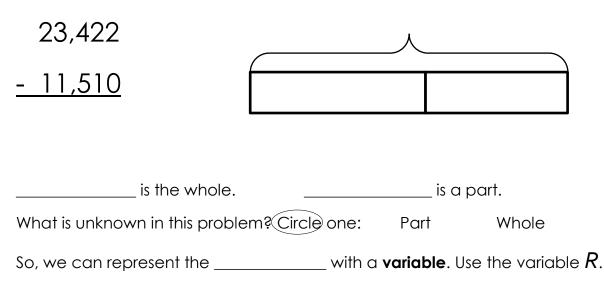
We can represent an unknown number with a letter, called a ______. In the example here, the letter _____ is a **variable**. **Problem 1:** Use a place value chart and place value disks to model subtracting alongside the algorithm, regrouping 1 hundred into 10 tens.

4,259		\checkmark		
<u>- 2,171</u>				
is the whole.		is a	part.	
What is unknown in this proble	em? Circle one:	Part	Whole	
So, we can represent the	with a	variable. L	Jse the variable	∍ <i>P</i>

Model the whole, _____, on the place value chart using place value disks.

thousands	hundreds	tens	ones

Check to see if we are ready to subtract. Are there enough **ones**? Yes / No Are there enough **tens**? Yes / No


We can unbundle one unit from the ______ place to make _____ tens.

Are there enough **hundreds**? Yes / No Are there enough **thousands**? Yes / No Subtract by crossing off place value disks to **take them away**.

4,259 – 2,171 = _____

P = _____

Problem 2: Regroup 1 thousand into 10 hundreds using the subtraction algorithm

Model the whole, _____, on the place value chart using place value disks.

Ten thousands	thousands	hundreds	tens	ones

Check to see if we are ready to subtract. Are there enough **ones**? Yes / No Are there enough **tens**? Yes / No Are there enough **hundreds**? Yes / No We can unbundle one unit from the _____ place to make _____ hundreds.

Are there enough **thousands**? Yes / No Are there enough **ten thousands**? Yes / No Subtract by <u>crossing off</u> place value disks to **take them away**.

23,422 – 11,510 = or	R =
----------------------	-----

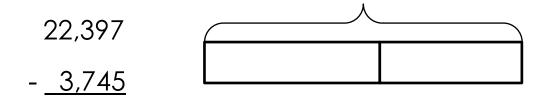
Problem 3: Solve a subtraction word problem, regrouping 1 ten thousand into 10 thousands.

The paper mill produced 73,658 boxes of paper. 8,052 boxes have been sold. How _____ many boxes remain?

,		Tape Dia	agram:		
_					
	is the who	ole.		is a part.	
What is unknow	n in this pr	oblem?	Circle one: F	Part Who	le
So, we can rep	resent the		with a var	iable. Use the vo	ariable B .
Model the whol	e,	, or	n the place value	chart using plac	ce value disks.
Ten thousands	thouse	ands	hundreds	tens	ones
Check to see if	we are re	ady to s	ubtract. Are there	enough ones ?	Yes / No
Are there enoug	-				
Are there enoug					
Are there enough thousands ? Yes / No We can unbundle one unit from the place to make					
	nousands.				
Are there enoug	-				
SUDIFICITIE DY CRO	<u>ssing ott</u> p	lace val	ue disks to take tl	nem away.	
		=		or B =	

Thursday

Name:	Octob	er 22, 2020
BCCSG	William Smith	Spelman


Lesson 14

Learning Target: I can use place value understanding to decompose to smaller units multiple times in any place using the standard subtraction algorithm, and apply the algorithm to solve word problems using tape diagrams.

	Do Now	
735	7,045	5,725
- <u>209</u>	- <u>4,203</u>	- 915

Input

Problem 1: Subtract, decomposing twice.

Check to see if we are ready to	subtract. Are there	enough ones ? Yes / No	
Are there enough tens ? Yes / N	10		
Are there enough hundreds? Ye	es / No		
We can unbundle one uni	t from the	place to make	
hundreds.			
Are there enough thousands? Y	es / No		
We can unbundle one uni	t from the	place to make	
thousands.			
Are there enough ten thousands	? Yes / No		
Subtract by crossing off place value disks to take them away .			
_	=	or P =	

Problem 2: Subtract, decomposing three times.

210,290	
- 45,720	
Check to see if we are ready to subtract.	
Are there enough ones ? Yes /No	
Are there enough tens ? Yes / No	
Are there enough hundreds ? Yes / No We can unbundle one unit from the hundreds.	_ place to make
Are there enough thousands ? Yes / No We can unbundle one unit from the thousands.	place to make
Are there enough ten thousands ? Yes / No We can unbundle one unit from the ten thousands.	place to make
Subtract by crossing off place value disks to take them away	
= or P =	:

Problem 3: Use the subtraction algorithm to solve a word problem, modeled with a tape diagram, decomposing units 3 times

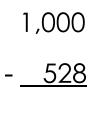
Bryce needed to purchase a large order of computer supplies for his company. He was allowed to spend \$859,239 on computers. However, he ended up only spending \$272,650. How much money was left?

	Tape Diagram:		
is the whole.		ic a	part
		is a	pun.
What is unknown in this proble	em? Circle one:	Part	Whole
So, we can represent the	with a	variable. U	se the variable ${\it D}$.
Check to see if we are ready	to subtract:		
Are there enough ones ? Yes	/No		
Are there enough tens ? Yes	/ No		
We can unbundle one tens.	unit from the		place to make
Are there enough hundreds ?	Yes / No		
We can unbundle one			place to make
hundreds.			
Are there enough thousands	? Yes / No		
Are there enough ten thousa			
We can unbundle one			place to make
ten thousands.			

Subtract by <u>crossing off</u> place value disks to **take them away**.

_____ = _____ or **P** = _____

Friday


Name: _ BCCSG October 23, 2020 William Smith Spelman

Lesson 15

Learning Target: I can use place value understanding to fluently decompose to smaller units multiple times in any place using the standard subtraction algorithm, and apply the algorithm to solve word problems using tape diagrams.

Input

Problem 1: Decompose numbers from 1 thousand into smaller units to subtract, modeled with place value disks.

Tape Diagram:		

= or **P** =

thousands	hundreds	tens	ones

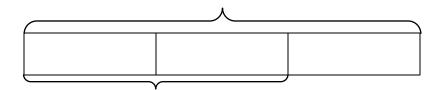
Check to see if we are ready to subtract. Are there enough **ones**? Yes / No Can we unbundle 1 unit from the tens? Yes / No Look to the hundreds. Can we unbundle 1 unit from the hundreds? Yes / No In order to get to 10 tens, we need to regroup 1 _____. Model with place value disks on your chart like Ms. Sheridan. **Problem 2:** Decompose numbers from 1 million into smaller units to subtract, modeled with place value disks.

1 <i>,</i> 000,000 - <u>345,528</u>	Tape Diagram:			
- <u>345,528</u>				
Check to see if we are ready to su	btract. Are there enough ones ? Yes / No			
Can we unbundle 1 unit from the tens? Yes / No Look to the hundreds. Can we unbundle 1 unit from the hundreds? Yes / No				
In order to get to 10 tens, we need to regroup 1 Use the place value chart on your <u>whiteboard</u> to model with place value disks				
like Ms. Sheridan.				

______ = _____ or **P** = ______

Monday

Name: _ BCCSG October 26, 2020 William Smith Spelman


Lesson 16 – Part 1

Learning Target: I can solve two-step word problems using the standard subtraction algorithm fluently modeled with tape diagrams, and assess the reasonableness of answers using rounding.

Input

Problem 1: Solve a two-step word problem, modeled with a tape diagram, assessing reasonableness of the answer using rounding.

A company has 3 locations with 70,010 employees altogether. The first location has 34,857 employees. The second location has 17,595 employees. How many employees work in the third location?

______ is the whole. ______ is a part. ______ is a part. ______ is a part. What is unknown in this problem? Circle one: Part Whole

Use the variable **E** to represent it.

Before solving, <u>estimate</u> to get a sense for what our answer will be. Round each number to the nearest **ten thousand** and solve.

+_____ -____

Estimated number of employees: _____

Now, solve to find the precise number of employees.

+_____ •_____

Compare with your estimate. Are the answers close to each other? Yes / No Is your answer reasonable? Yes / No

Answer as a sentence: _____

Problem 2: Solve two-step word problems, modeled with a tape diagram, assessing reasonableness of the answer using rounding.

Owen's goal is to have 1 million people visit his new website within the first four months of it being launched. Below is a chart showing the number of visitors each month. How many more visitors does he need in Month 4 to reach his goal?

Month	Month 1	Month 2	Month 3	Month 4
Visitors	228,211	301,856	299,542	

Tape Diagram:		

is the whole	is a part.		is a part.
What is unknown in this problem?	Circle one: Part	Whole	

Use the variable **E** to represent it.

Before solving, <u>estimate</u> to get a sense for what our answer will be. Round each number to the nearest **hundred thousand** and solve.

+_____ -____

Estimated number of visitors:

Now, solve to find the precise number of visitors.

+_____ •_____

Compare with your estimate. Are the answers close to each other? Yes / No Is your answer reasonable? Yes / No

Answer as a sentence:

Tuesday

Name: _____ BCCSG October 27, 2020 William Smith Spelman

Lesson 16 – Part 2

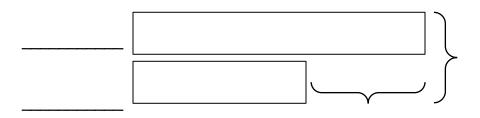
Learning Target: I can solve two-step word problems using the standard subtraction algorithm fluently modeled with tape diagrams, and assess the reasonableness of answers using rounding.

Do Now

Solve the problem using a tape diagram. Estimate your answer first to make sure it will be reasonable!

Three stores sold 21,353 flowers altogether. The first store sold 3,245 flowers. The second store sold 4,732 flowers. How flowers did the third store sell?

Tape Diagram:


Estimated number of flowers: _____

Actual number of flowers: _____

Input

Problem 3: Solve a two-step, "compare with smaller unknown" word problem.

There were 12,345 people at a concert on Saturday night. On Sunday night, there were 1,795 fewer people at the concert than on Saturday night. How many people attended the concert on both nights?

Before solving, <u>estimate</u> to get a sense for what our answer will be. Round each number to the nearest **thousand** and solve.

-_____ +_____

Estimated number of people: _____

Now, solve to find the precise number of employees.

-_____+_____

Compare with your estimate. Are the answers close to each other? Yes / No Is your answer reasonable? Yes / No

Answer as a sentence: