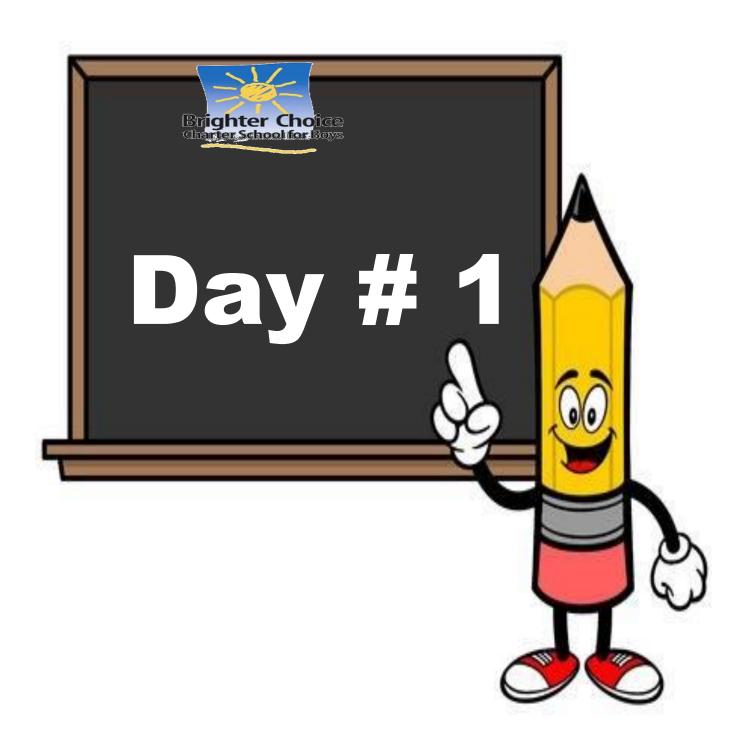
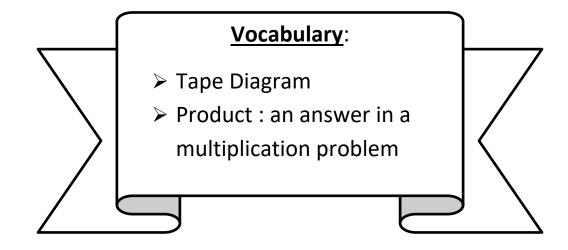


3rd Grade Modified Math Remote Learning Packet Week 5



Dear Educator,

My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.


(Parent Signature)	(Date)

Parents please note that all academic are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

LEQ: How can I relate arrays to tape diagrams to model the commutative property of multiplication?

Objective: I can think of the number of groups in a tape diagram as number of rows, and the size of each group in a tape diagram as the number of columns, to model the commutative property of multiplication.

Name: _____

Week 5 Day 1 Date: _____

BCCS-B

Harvard

Yale

Princeton

<u>Do Now:</u> Multiply to find the product.

Name: _____

Week 5 Day 1 Date: _____

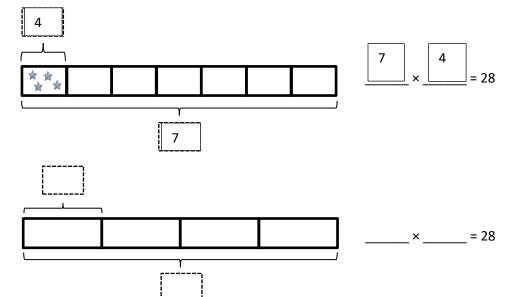
Yale

Princeton

Input:

BCCS-B

In an array, each row is one ______. In a tape diagram, each ______ is one group. In an array, the number of columns is the ______.


Harvard

In a tape diagram, the number of objects in _____ box tells the group size.

__4___ Rows → __7___ groups
_____ Columns → _____ objects per group

1. Label the tape diagrams and complete the equations. Then, draw an array to represent *each* tape diagram.

Array		
	Array	Array

Array

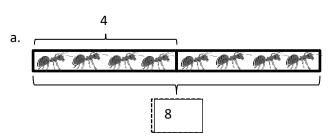
Name:	Week 5 Day 1	Date:	
BCCS-B	Harvard	Yale	Princeton

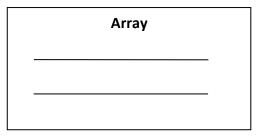
Input:

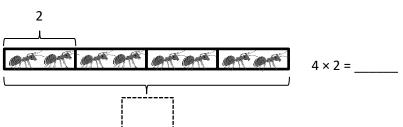
2. Draw and label 2 tape diagrams to model why the statement in the box is true.

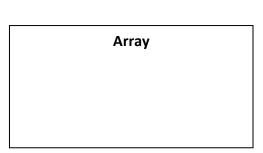
Tape Diagram #1	Tape Diagram #2
e tape diagram was started for you	

Harvard

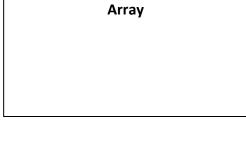

Yale


Princeton


Problem Set:

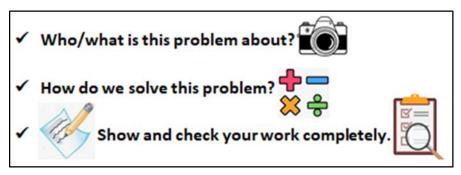

1. Label the tape diagrams and complete the equations. Then, draw an array to represent *each* tape diagram.

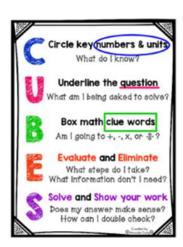
 $2 \times 4 = 8$



Array	

Name:	Week 5 Day 1	Date:	
BCCS-B	Harvard	Yale	Princeton


Problem Set:


2. Draw and label 2 tape diagrams to model why the statement in the box is true.

$$4 \times 6 = 6 \times 4$$

Tape Diagram #1	Tape Diagram #2
**	

Name:	Week 5 Day 1	Date:	
BCCS-B	Harvard	Yale	Princeton

Application:

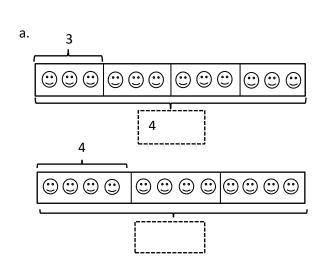
A cell phone is about **4 inches** long. <u>About how long are 8 cell phones</u> <u>laid end to end?</u> Use a tape diagram to show your thinking.

8 cell phones are about _____ inches long when laid end to end.

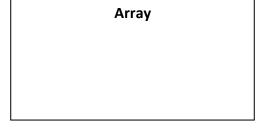
Name:	Week 5 Day 1	. Date:	
BCCS-B	Harvard	Yale	Princeton

Exit Ticket:

1. Draw and label 2 tape diagrams to model why the statement in the box is true.


$$4 \times 7 = 7 \times 4$$

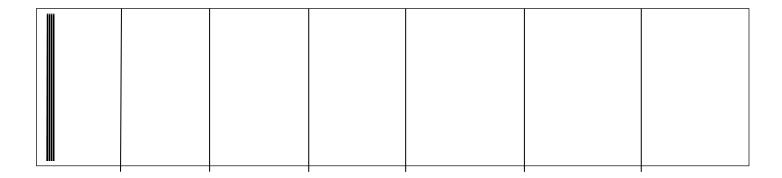
Tape Diagram #1	Tape Diagram #2


Homework Page 1

1. Label the tape diagrams and complete the equations. Then, draw an array to represent the problems.

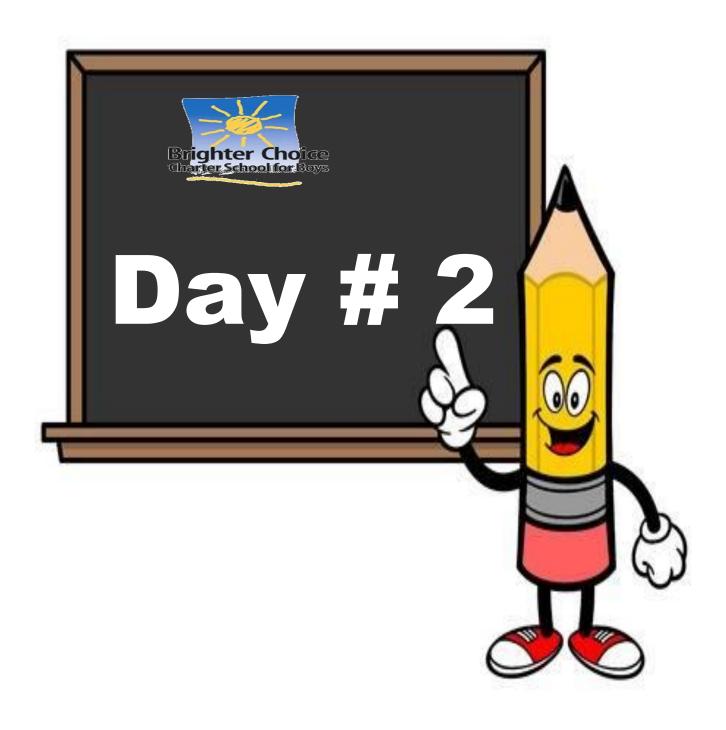
Harvard

4 × 3= 12

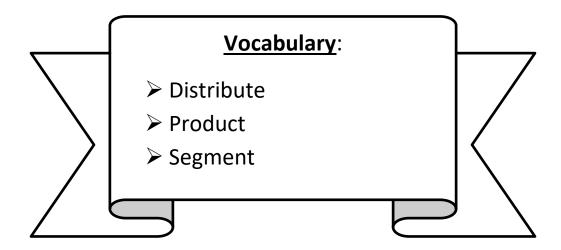

3 × 4 = ____

Array

b.			Array
		4 × =	
[-		•	
Į.	. <u></u>	1	Array
		×4=	


Name:	Week 5 Day 1	Date:	
BCCS-B	Harvard	Yale	Princeton
Homework Page 2			

2. <u>Seven clowns</u> hold <u>4 balloons</u> each at the fair. <u>Draw and label a tape</u> diagram to show the total number of balloons the clowns hold.


How many balloons are in each box?

3. George swims **7 laps** in the pool each day. How many laps does George swim after **4 days**?

LEQ: How can I use the distributive property to find related multiplication facts?

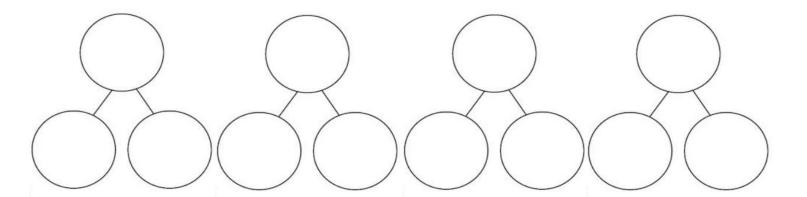
<u>Objective</u>: I can apply my knowledge of 5x4 and add smaller familiar products and use the distributive property to find related multiplication facts.

Name: **BCCS-B**

Week 5 Day 2 Date:

Harvard

Yale


Princeton

Do Now: Multiply to find the product.

bottom product to 5 fours or 20.

Input:

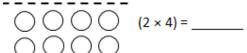
When using an array to multiply by 4, I can use 5x4= 20 as a familiar fact to help me _____ or break apart the rows into smaller parts. I can_____ an array after ____ rows. Finally, I can add the smaller

1. Label the array. Then, fill in the blanks below to make true number sentences.

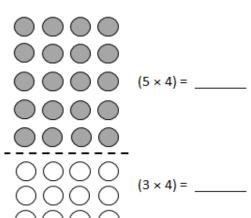
a. **6 × 4 =** 24

$$(6 \times 4) = (5 \times 4) + (1 \times 4)$$

$$= 20 + 4$$

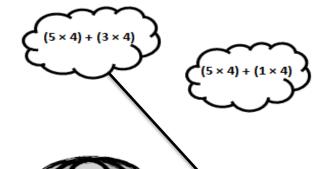

$$= 24$$

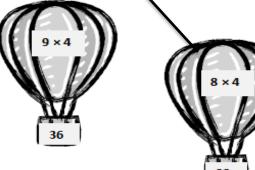
b. 7 × 4 = ____

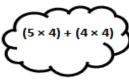


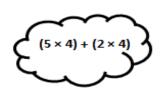


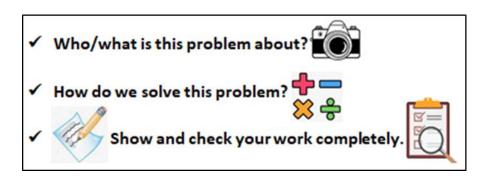
Problem Set:

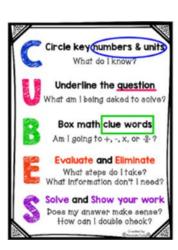

- 1. Label the array. Then, fill in the blanks below to make true number sentences.
 - a. 8 × 4 = ____




(8 × 4) = (5 × 4) + (____ × 4) = ____ + ____ b. 9 × 4 = ____


2. Match the equal expressions with a line connecting a cloud to its corresponding hot air balloon.





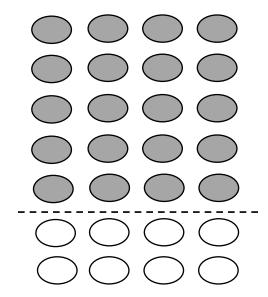
Name:	Week 5 Day 2	Week 5 Day 2 Date:		
BCCS-B	Harvard	Yale	Princeton	
	e array below to find the answ e says, "10 × 4 is just double 5		_	
<u>strategy</u>				
Jonathan's strategy	works because			

Name:	Week 5 Day 2	Date:	
BCCS-B	Harvard	Yale	Princeton

Application:

minus

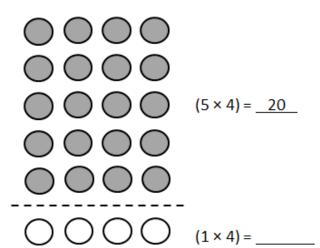
Ms. Maisenbacher sits scholars in <u>4 rows of 7</u>. On Monday, <u>6 students are absent.</u> How many students are in class on Monday?


Make an array 4 x 7

_____ students in class on Monday.

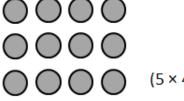
Name:		 		
BCCS-B				

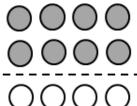
Week 5 Day 2 Date: _____ Harvard Yale Princeton


Exit Ticket:

Homework:

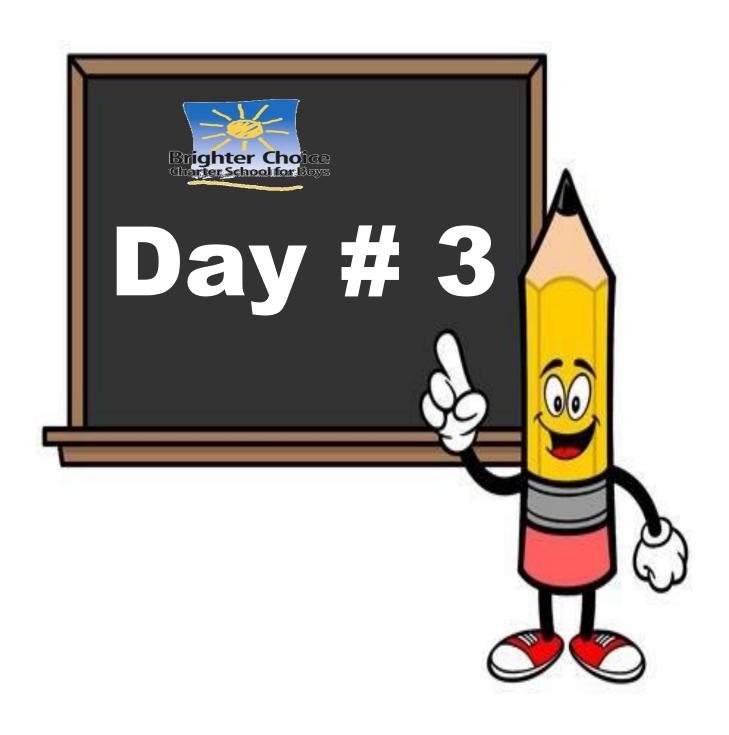
1. Label the array. Then, fill in the blanks below to make true number sentences.

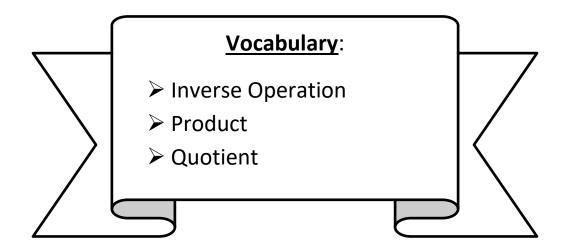

a. 6 × 4 = _____



$$(6 \times 4) = (5 \times 4) + (1 \times 4)$$

= ____


2. The array below shows one strategy for solving 9×4 . Explain the strategy using your own words.


$(4 \times 4) =$	

LEQ: How can I model the relationship between multiplication and division?

<u>**Objective:**</u> I can use inverse operation to model the relationship between multiplication and division.

Name: _____ BCCS-B

Week 5 Day 3 Date: _____ Harvard

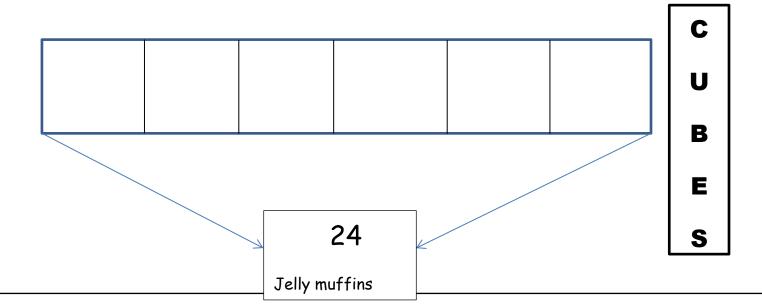
Yale

Princeton

Do Now: Multiply or Divide by 4

1.	2 × 4 =	8
2.	3 × 4 =	12
3.	4 × 4 =	16
4.	5 × 4 =	20
5.	1 × 4 =	4
6.	8 ÷ 4 =	2
7.	12 ÷ 4 =	3
8.	20 ÷ 4 =	5
9.	4 ÷ 1 =	4
10.	16 ÷ 4 =	
11.	6 × 4 =	
12.	7 × 4 =	
13.	8 × 4 =	
14.	9 × 4 =	
15.	10 × 4 =	
16.	32 ÷ 4 =	
17.	28 ÷ 4 =	
18.	36 ÷ 4 =	
19.	24 ÷ 4 =	
20.	40 ÷ 4 =	
21.	× 4 = 20	
22.	×4 = 24	

23.	× 4 = 40	
24.	× 4 = 8	
25.	×4 = 12	
26.	40 ÷ 4 =	
27.	20 ÷ 4 =	
28.	4 ÷ 1 =	
29.	8 ÷ 4 =	
30.	12 ÷ 4 =	
31.	×4 = 16	
32.	×4 = 28	
33.	×4=36	
34.	×4=32	
35.	28 ÷ 4 =	
36.	36 ÷ 4 =	
37.	24 ÷ 4 =	
38.	32 ÷ 4 =	
39.	11 × 4 =	
40.	44 ÷ 4 =	
41.	12 ÷ 4 =	
42.	48 ÷ 4 =	
43.	14 × 4 =	
44.	56 ÷ 4 =	


Name:	Week 5 Day 3	Date:	
BCCS-B	Harvard	Yale	Princeton

Input:

Multiplication and division are ______. The product of the multiplication equation will always be equal to the dividend in the corresponding inverse relationship. The divisor and dividend in the division equation will always be equal to the ______ in the corresponding inverse relationship.

1 × 4 = 4	÷ 4 = 1
2 x 4 =8	8÷4=2
3 x 4 =12	12÷4=3
4 x 4 =	÷4=4
5 x 4 =	÷4=5
6 x 4 =	÷4=6
7 x 4 =	÷4=7
8 x 4 =	÷4=8
9 x 4 =	÷4=9
10 x 4 =	÷4=10

1. The chef packs 24 jelly muffins in boxes of 4) Draw and label a tape diagram to find the number of boxes he packs.

2. The waitress arranges 36 cups into 4 equal rows. How many glasses are in each row?

C

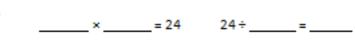
U

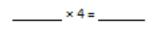
В

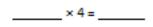
E

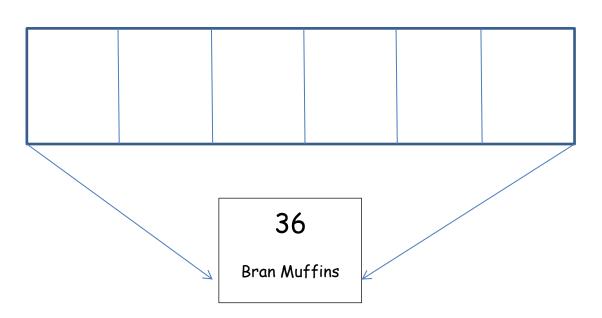
Problem Set:

1. Use the array to complete the related equations.





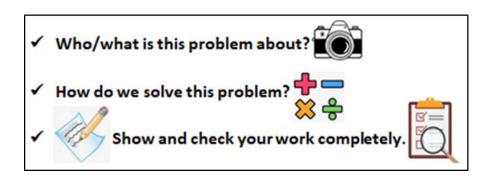


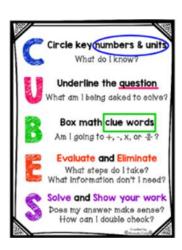


The baker packs 36 bran muffins in boxes of 4. Draw and label a tape 2. diagram to find the number of boxes he packs.

C

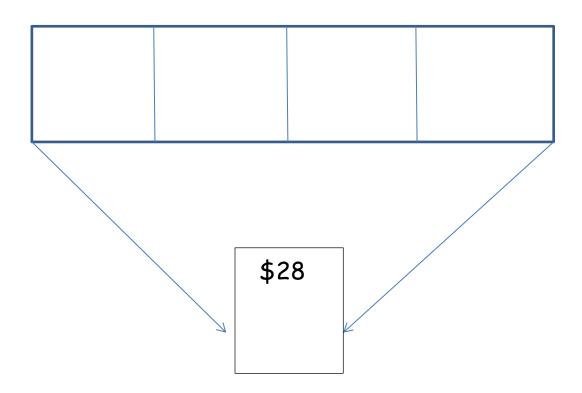
E


The waitress arranges 32 glasses into 4 equal rows. How many glasses are 3. in each row?


C

B

E


Name:	Week 5 Day 3	Date:	
BCCS-B	Harvard	Yale	Princeton

Application:

Janet paid \$28 for 4 notebooks. Each notebook costs the same amount. What is the cost of 3 notebooks?

Name:	Week 5 Day 3	Date: _	
BCCS-B	Harvard	Yale	Princeton

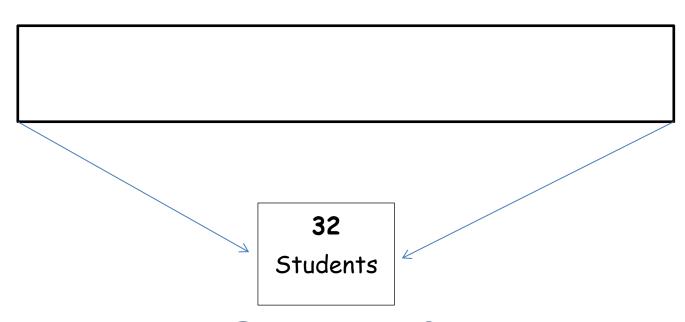
Exit Ticket:

1. The cook uses 28 pepperonis to make 4 slices of pizza. How many pepperonis are in 2 slices of pizza? Draw and label a tape diagram to solve.

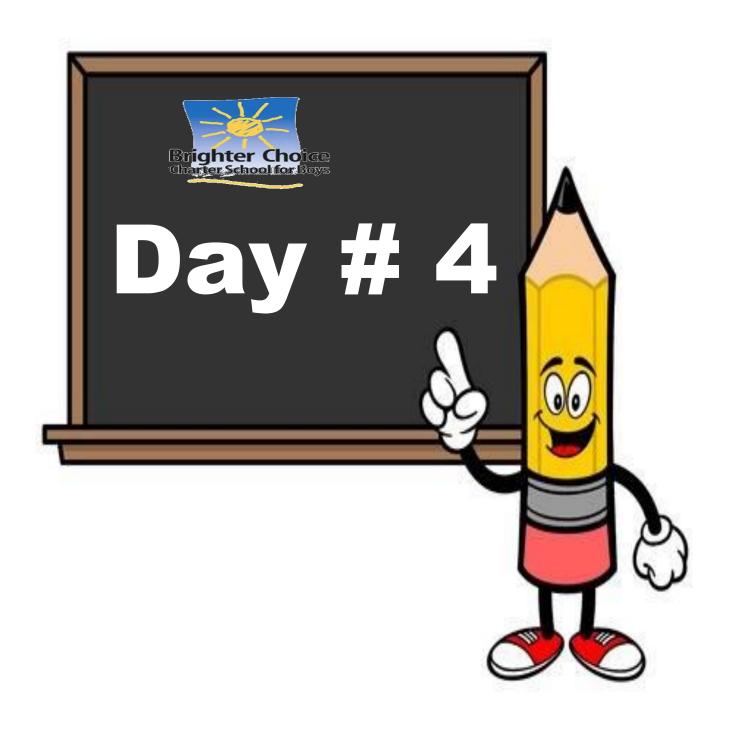
C

U

В

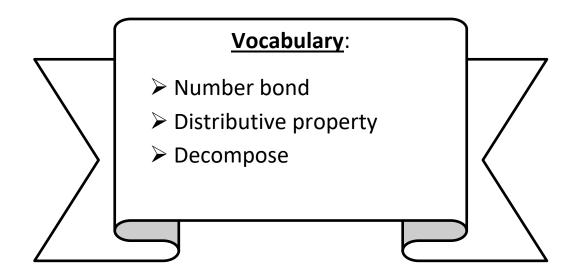

E

S


Name:	Week 5 Day 3	Date:	
BCCS-B	Harvard	Yale	Princeton

Homework:

1. The teacher puts 32 students into groups of 4. How many groups does she make? Draw and label a tape diagram to solve.



2. The store clerk arranges 24 toothbrushes into 4 equal rows. How many toothbrushes are in each row?

LEQ: How can I apply the distributive property to decompose units?

<u>Objective</u>: I can create a number bond for the given expression and segment its corresponding array to decompose units using the distributive property.

Name:					
BCCS-B					

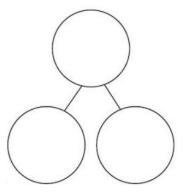
Week 5 Day 4 Date: _____ Harvard

Yale

Princeton

Do Now: Add or subtract using 5.

1.	5 + 0 =	5
2.	5 + 5 =	10
3.	5 + 10 =	15
4.	5 + 15 =	20
5.	5 + 20 =	25
6.	5 + 25 =	30
7.	5 + 30 =	35
8.	5 + 35 =	40
9.	5 + 40 =	
10.	5 + 45 =	
11.	50 – 5 =	
12.	45 – 5 =	
13.	40 – 5 =	
14.	35 – 5 =	
15.	30 – 5 =	
16.	25 – 5 =	
17.	20 – 5 =	
18.	15 – 5 =	
19.	10 – 5 =	
20.	5 – 5 =	
21.	0 + 5 =	
22.	5 + 5 =	


23.	10 + 5 =	
24.	15 + 5 =	
25.	20 + 5 =	
26.	25 + 5 =	
27.	30 + 5 =	
28.	35 + 5 =	
29.	40 + 5 =	
30.	45 + 5 =	
31.	50 + 0 =	
32.	50 + 50 =	
33.	5 + 50 =	
34.	5 + 55 =	
35.	60 – 5 =	
36.	55 – 5 =	50
37.	5 + 60 =	65
38.	5 + 65 =	
39.	70 – 5 =	
40.	65 – 5 =	
41.	50 + 100 =	
42.	50 + 150 =	
43.	200 – 50 =	
44.	150 – 50 =	

Harvard

Input:

I can use the **break apart** and distribute strategy to _____ units.

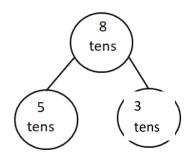
I can **decompose** the first factor into equal groups of **5 or 10**, when possible.

1. There are 8 teams in the tennis tournament. Tenchildren play on each team. How many children are playing in the tournament? Use the break apart and distribute strategy, and draw a number bond to solve.

2. What is the total number of sides on 8 squares?

Name:

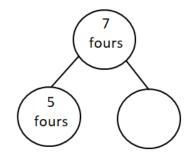
Week 5 Day 4 Date: _____

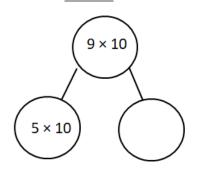

BCCS-B

Harvard

Yale

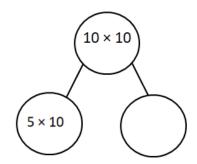
Princeton


Problem Set:

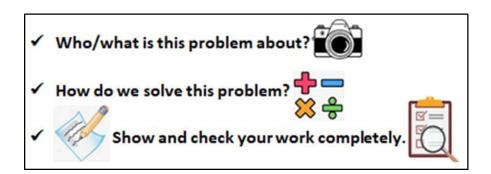


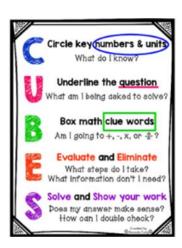
$$(5 \times 10) + (_3 \times 10) = 8 \times 10$$

$$50 + _8 \times 10 = _80$$


$$8 \times 10 = _80$$

$$(5 \times 10) + (\underline{} \times 10) = 9 \times 10$$


4. 10 × 10 =



$$(5 \times 10) + (\underline{} \times 10) = 10 \times 10$$

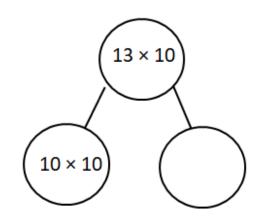
Name:			
BCCS-B	Harvard	Yale	Princeton
5. There are 7 teams in the soccer tournal children are playing in the tournament?			
	ose the break apar	it and distribu	te strategy, and
draw a number bond to solve.			
There are children playing in t	the tournament.		
6. What is the total number of sides on 8	triangles?		
<u>—</u>	, 0		
The total number of sides on 8 triangles is	sides		

Name:	Week 5 Day 4 Date:		
BCCS-B	Harvard	Yale	Princeton

Application:

A parking lot has 11 floors. There are 3 cars parked on each level. How many cars are parked in the lot? Draw an array.

Name: _____ BCCS-B


Week 5 Day 4 Date: _____ Harvard

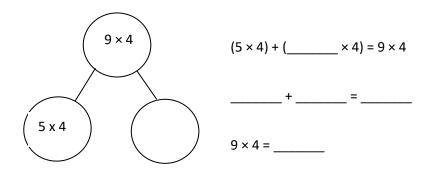
Yale

Princeton

Exit Ticket:

13 × 10 = _____

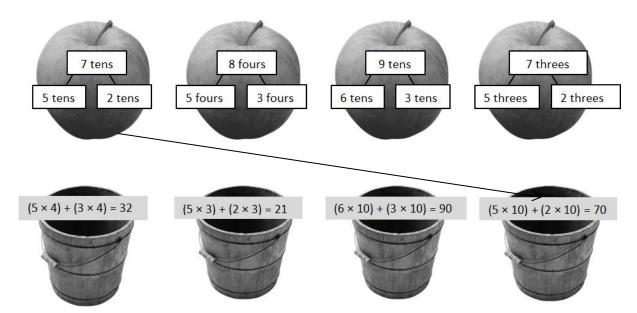
10 tens + ____ = 13 tens

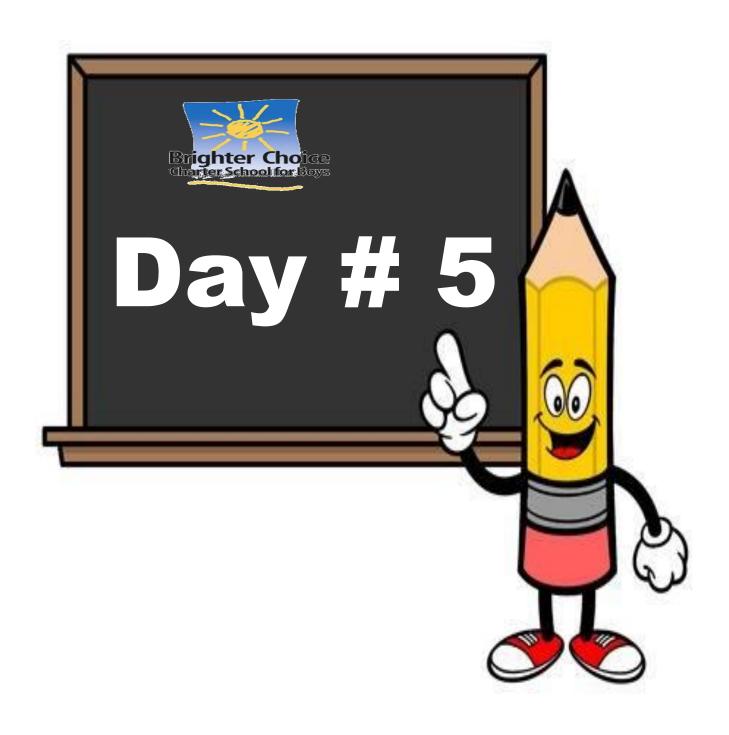

 $(10 \times 10) + (\underline{} \times 10) = 13 \times 10$

____+__ = ____

13 × 10 = _____

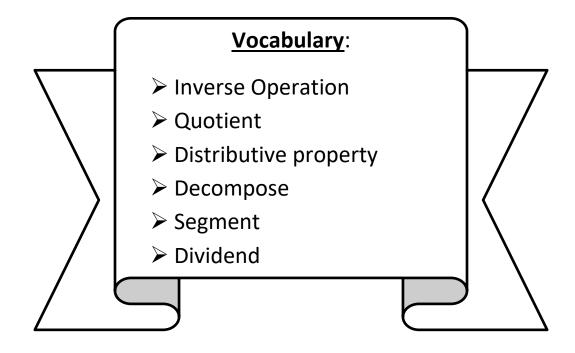
Name:	Week 5 Day 4	Date:	
BCCS-B	Harvard	Yale	Princeton


Homework:



2. Mr. Stallings makes 10 pancakes. He tops each pancake with 4 blueberries. How many blueberries does he use in all? Use the break apart and distribute strategy, and draw a number bond to solve.

Mr. Stallings uses _____ blueberries in all.


3. Match.

LEQ: How can I apply the distributive property to decompose units?

<u>Objective</u>: I can segment an array into two familiar parts and add each part's quotient to decompose units.

Name: BCCS-B

Week 5 Day 5 Date: _____

Harvard

Yale

Princeton

Do Now:

Multiplication: 0 - 5

25

1

x 2

x 0

X

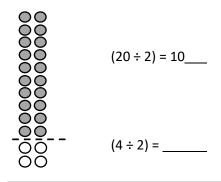
x 4

x 6

x 9

x 5

0


Input:

In multiplication, we break up the number of groups (or rows) to find non-familiar products.

When we break apart to divide, we decompose the total or _____ to

find larger quotients.

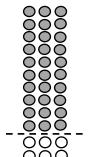
a.
$$24 \div 2 =$$

$$(20 \div 2) = (20 \div 2) + (4 \div 2)$$

$$= 10 + 2$$

$$= 12$$

b. Tamim draws the array below to find the answer to 24 ÷ 2. Explain his strategy.


Review of Inverse operations:

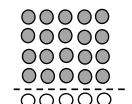
The missing quotient in a division equation is one of the factors of its inverse, corresponding multiplication equation.

Problem Set:

1. Label the array. Then, fill in the blanks to make true number sentences.

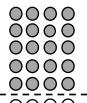
a.
$$36 \div 3 =$$

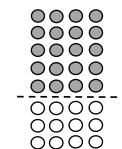
$$(30 \div 3) = 10$$


$$(6 \div 3) = 2$$

$$(36 \div 3) = (30 \div 3) + (6 \div 3)$$

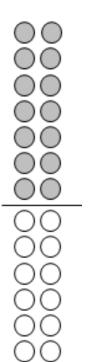
$$= \underline{10} + \underline{2}$$


$$= \underline{12}$$


b.
$$25 \div 5 =$$

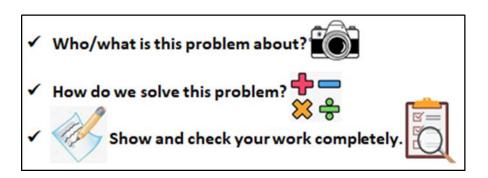
$$(20 \div 5) = 4$$

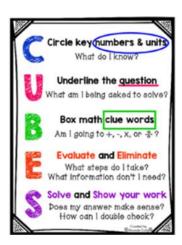
$$(25 \div 5) = (20 \div 5) + (5 \div 5)$$



$$(32 \div 4) = (20 \div 4) + (\underline{\hspace{1cm}} \div 4)$$

Name: _			
BCCS-B			


Week 5 Day 5 Date: ______ Harvard Yale Princeton

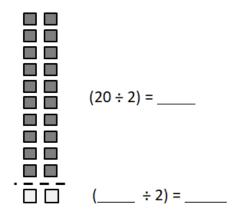

2. Mrs. Blomgren draws the array below to find the quotient for 28 \div 2. Explain her strategy.

 	 	 	 _
 	 	 	 _
			 _
 	 	 	 _
 			 _
			_
 	 	 	 _
			_

Name:	Week 5 Day 5	Date:	
BCCS-B	Harvard	Yale	Princeton

Application:

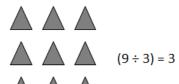
Henry works at Footlocker lacing shoes. He uses 2 shoelaces to lace each pair of shoes. He has a total of 4 laces. How many pairs of shoes can Henry lace?


24 Laces

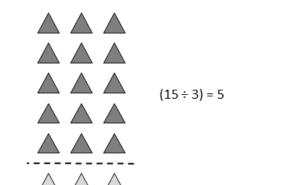
Name:			
BCCS-B			

Week 5 Day 5 Date: _____ Harvard Yale Princeton

Exit Ticket:


Complete the equations below to solve $22 \div 2 = \frac{10}{2}$.

BCCS-B


Homework:

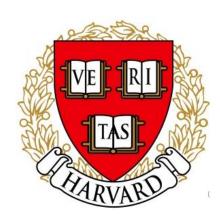
1. Label the array. Then, fill in the blanks to make true number sentences.

$$(18 \div 3) = (9 \div 3) + (9 \div 3)$$

= __3__ + _____

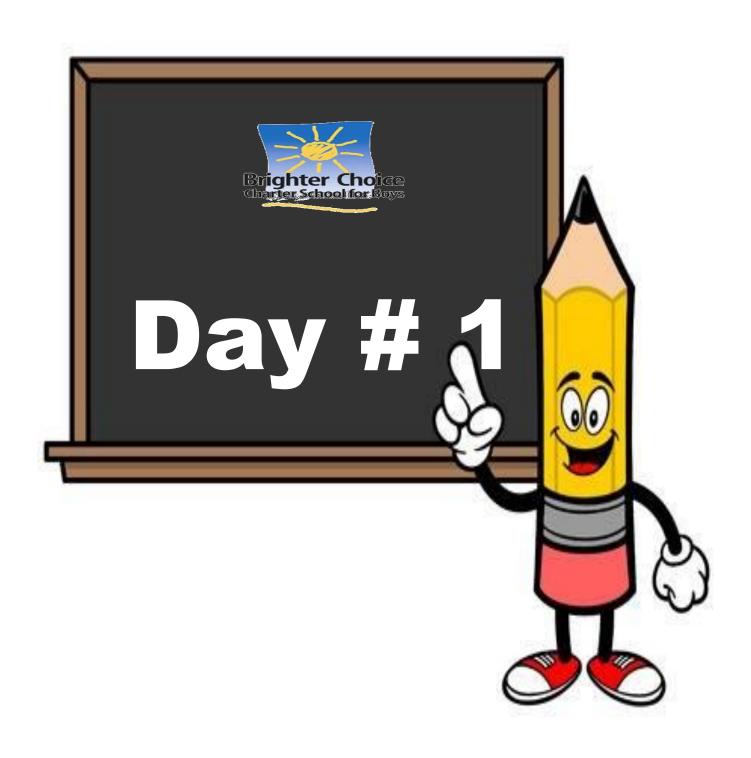
= 6

(6 ÷ 3) = _____


2. Max divides 36 pencils equally into 9 groups. How many pencils are in each group? Draw a tape diagram or an array.

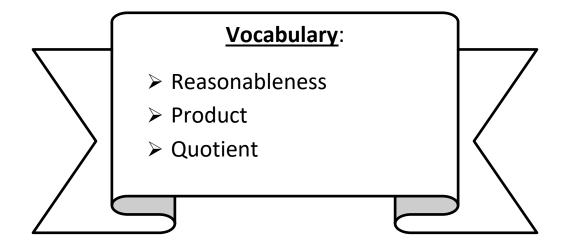
N	lame	
•		

3rd Grade Modified Math Remote Learning Packet Week 6



Dear Educator,

My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.


(Parent Signature)	(Date)

Parents please note that all academic are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

LEQ: How can I solve two-step word problems involving division and multiplication and assess the reasonableness of the answers?

<u>Objective</u>: I can use CUBES, write an answer sentence with units, and draw a diagram to solve two-step word problems involving division and multiplication and assess the reasonableness of the answers.

Week 6 Day 1 Date: _____

BCCS-B

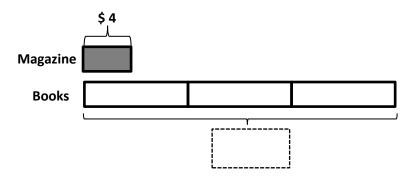
Harvard

Yale

Princeton

<u>Do Now</u>: Skip-count by 5 forward or backwards to fill in the blank.

5, 10, _15
10, 15, _20
15, 20, _25
20, 25, _30
25, 30,
30, 35,
35, 40,
40, 45,
50, 45,
45, 40,
40, 35,
35, 30,
30, 25,
25, 20,
20, 15,
15, 10,
0,, 10
25,, 35
5,, 15
30,, 40
10,, 20
35,, 45


15,	, 25
35,	, 45
20,	, 30
25,	, 15
50,	, 60
20, _	, 10
45,	, 35
15, _	, 5
35,	, 25
10, _	, 0
35,	, 25
	, 15, 10
	, 40, 35
	, 20, 15
	, 45, 40
	, 10, 5
	, 35, 30
45, 50	0,
50, 55	5,
55, 60	0,
65,	, 55
	, 60, 55

Name:	Week 6 Day 1	Date:	
BCCS-B	Harvard	Yale	Princeton
Input:			
When solving word problems we use the math to	ool to make	sure we solve th	ne problem completely.
C ircle			
U			
В			
E			
S			
We make a mental movie of the problem bef	ore and after solving	g it to see if it n	 nakes sense. When we
check if our answer makes sense, we call that	assessing the		of the answer.
1. Gaius buys 2 comic books and a magazine costs \$3	zine at the book st	ore. Each cor	nic book costs 6 A
a. What is the total cost of the comic books?	Magazi		
	Comic boo	ks	
b. How much does Gaius spend altogether?		[-	· <u>-</u>
		Ĺ_	j
2. Ms. Millin has 40 apple slices and 10 pe	each slices. Five c	hildren equall	y share all of the
fruit slices. How many fruit slices does ea	ach child get?		С
			U
			В
			E
			S 54

Harvard

Problem Set:

1. Caleb buys 3 books and a magazine at the book store. Each book costs \$8 A magazine costs \$4.

- c. What is the total cost of the books?
- d. How much does Caleb spend altogether?

- 28 silly bands

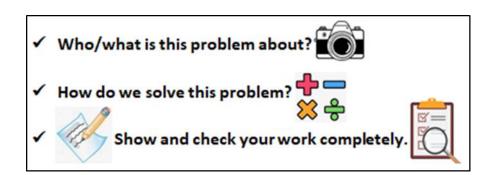
 2. Seven children share 28 silly bands equally.

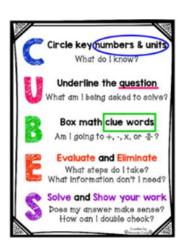
 a. How many silly bands does each child get?
 - b. How many silly bands do 3 children get?

Name: BCCS-B	Week 6 Day 1 Harvard	Date: Yale	Princeton
3. Eighteen cups are equally packed into are unbroken?	boxes. Two box	es of cups break.	How many cups
			С
			U
			В
			E
			S

4. There are 25 blue balloons and 15 red balloons at a party. Five children are given an equal number of each color balloon. How many blue and red balloons does each child get?

C

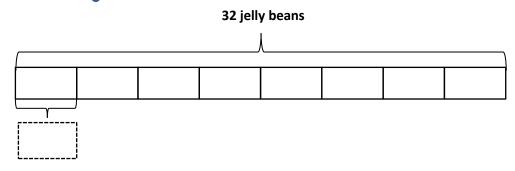

U


B

Ε

S

Name:	Week 6 Day 1	Date:		
BCCS-B	Harvard	Yale	Princeton	


Application:

Red, orange, and blue scarves are on sale for \$4 each. Ms. Sherman buys 2 scarves of each color. How much does she spend altogether?

Harvard

Exit Ticket:

1. Thirty-two jelly beans are shared by 8 students.

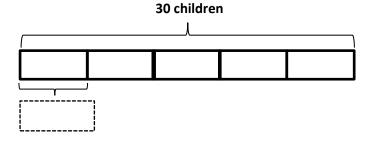
- a. How many jelly beans will each student get?
- b. How many jelly beans will 4 students get?

2. The teacher has 30 apple slices and 20 pear slices. Five children equally share all of the fruit slices. How many fruit slices does each child get?

C

U

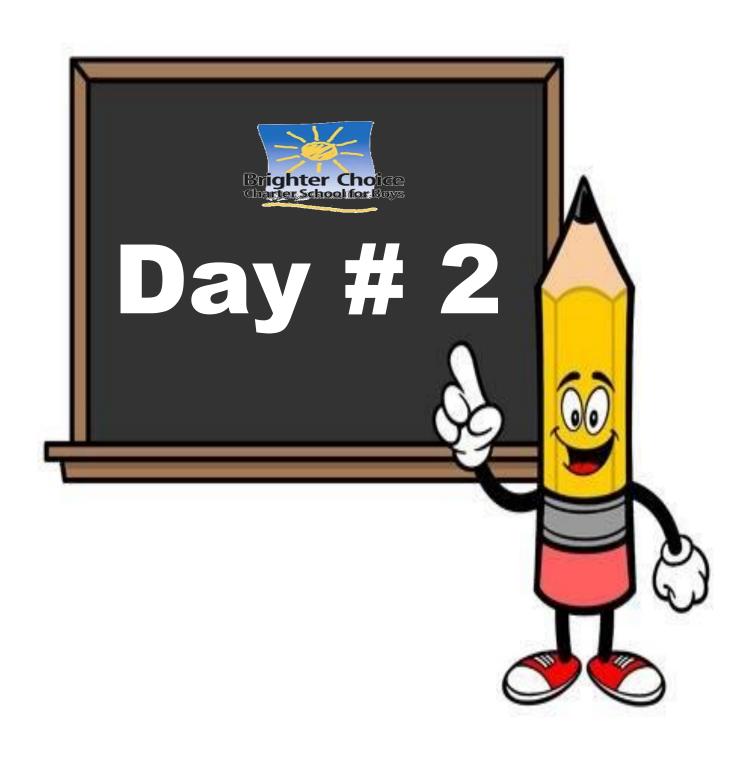
B


E

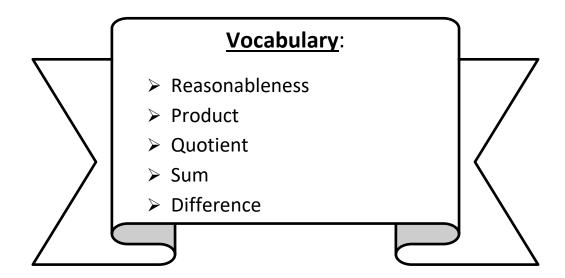
S

Homework:

1. Thirty students are eating lunch at 5 tables. Each table has the same number of students.


a. How many students are sitting at each table?

b. How many students are sitting at 4 tables?


2. The teacher has 12 green stickers and 15 purple stickers. Three students are given an equal number of each color sticker. How many green and purple stickers does each student get?

E

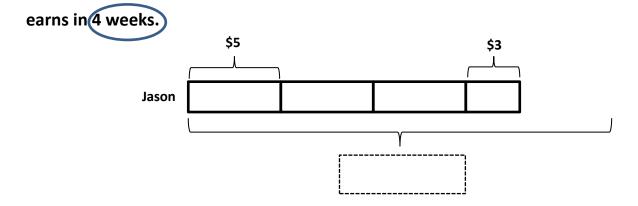
LEQ: How can I solve two-step word problems involving all four operations and assess the reasonableness of the answers?

<u>Objective</u>: I can use CUBES, write an answer sentence with units, and draw a diagram to solve two-step word problems involving all four operations and assess the reasonableness of the answers.

Name:

Week 6 Day 2 Date:

Harvard BCCS-B

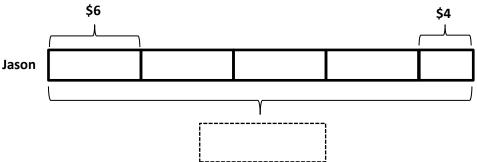

Yale

Princeton

Do Now: Multiply to find the product

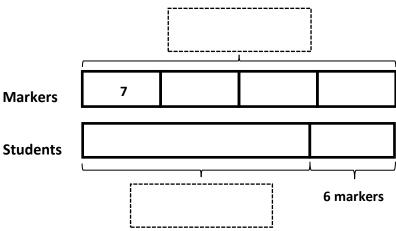
Input:

1. Peter earns \$5 per week for doing all his chores. On the fourth week, he forgets to take out the trash, so he only earns \$3. Write and solve an equation to show how much Peter


Peter earns ______.

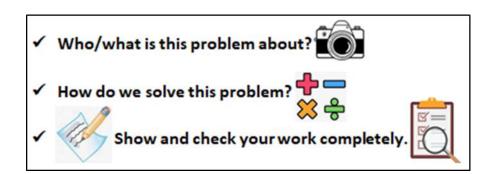
2. Mrs. Boomhower buys a box of (21) fruit snacks. Each box comes with an equal number of berry-, apple-, and grape-flavored snacks. She eats all of the grape-flavored snacks. How many fruit snacks does she have left?

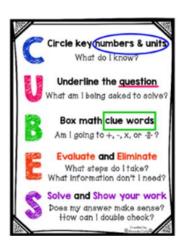
Е


Problem Set:

1. Chamar earns \$6 per week for doing all his chores. On the fifth week, he forgets to take out the trash, so he only earns \$4 Write and solve an equation to show how much Chamar earns in 5 weeks.

Chamar earns ______.


2. Ms. Maisenbacher orders 4 packs of 7 markers. After passing out 1 marker to each student in her class, she has 6 left. Label the tape diagram to find how many students are in Ms. Maisenbacher's class.



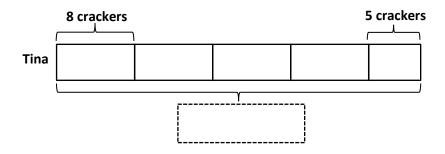
There are _____ students in Ms. Maisenbacher's class.

- 3. Mrs. Blomgren buys a box of 18 fruit snacks. Each box comes with an equal number of strawberry-, cherry-, and grape-flavored snacks. She eats all of the grape-flavored snacks. How many fruit snacks does she have left?
 - C U B
- 4. Elias buys 21 meters of ribbon. He cuts the ribbon so that each piece measures 3 meters in length.
 - a. How many pieces of ribbon does he have?
 - b. If Elias needs a total of 12 pieces of the shorter ribbon, how many more pieces of the shorter ribbon does he need?

Name:	Week 6 Day 2 Date:		
BCCS-B	Harvard	Yale	Princeton

Application:

There are 4 boxes with 6 binders in each one. Three brothers share the binders. How many binders does each brother get?


Name:	Week 6 Day 2	Date:	
BCCS-B	Harvard	Yale	Princeton
Exit Ticket:			

Mrs. Mercado buys 27 books for her classroom library. She buys an equal number of fiction, nonfiction, and poetry books. She shelves all of the poetry books first. Draw and label a tape diagram to show how many books Mrs. Mercado has left to shelve.

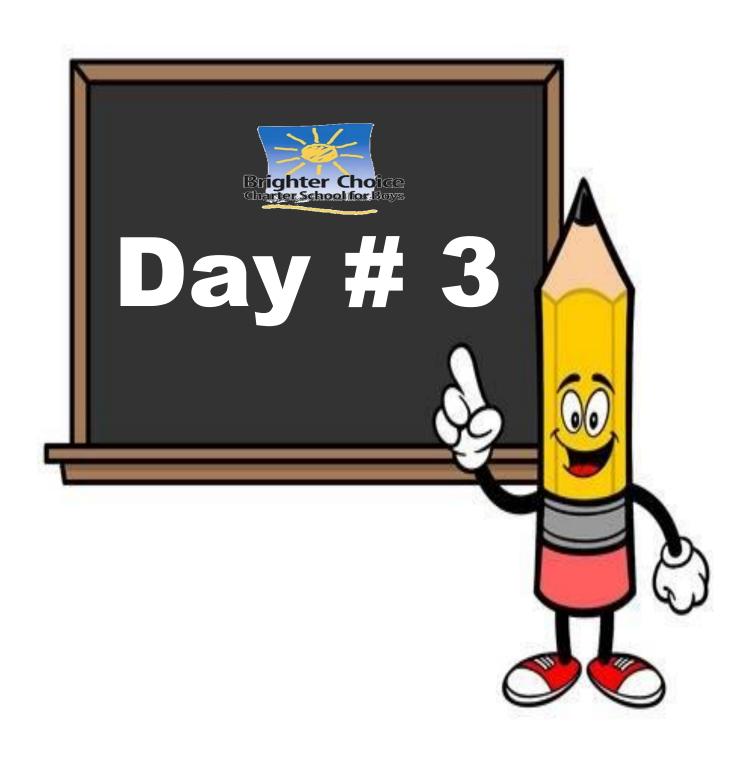
Name:	Week 6 Day 2	Date:	
BCCS-B	Harvard	Yale	Princeton

Homework:

1. Ms. Neville eats 8 crackers for a snack each day at school. On Friday, she drops 3 and only eats 5 Write and solve an equation to show the total number of crackers Ms. Neville eats during the week.

Ms. Neville eats	crackers
ivis. Neville eats	crackers

2. Mr. Thompson plants 24 trees around the neighborhood pond. He plants equal numbers of maple, pine, spruce, and birch trees. He waters the spruce and birch trees before it gets dark. How many trees does Mr. Thompson still need to water? Draw and label a tape diagram.


C

U

B

E

S

Name:	Week 6 Day 3	Date:	
BCCS-B	Harvard	Yale	Princeton

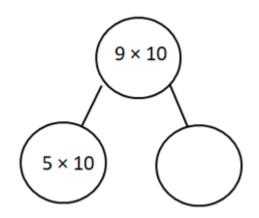
End of Module 1 Assessment Task PRACTICE

1) Which equation below is the corresponding inverse equation to 4x6=24?

a) 4x6 = 24

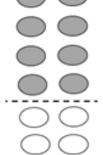
BCCS-B

- b) 24x1=24
- c) $24 \div 4 = 6$
- d) 1x24=24


2) Which expression below is equivalent to 5x9 as stated in the commutative property?

- a) 45x1
- b) 9x5
- c) 5x5
- d) 5x4

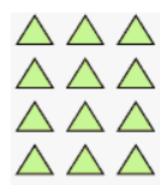
3) Which number makes the number bond true?



- b) 90
- c) 50
- d) 100

4) What is the product of the array below?

- a) 10
- b) 14
- c) 4
- d) 8



Name:	Week 6 Day 3	3 Date:	
BCCS-B	Harvard	Yale	Princeton
5) Ms. Greco is making cheesebucheeseburger. If she uses 27 slice Greco make?	_		
a) 30b) 27c) 9d) 20			
6) An array is represented by 5x	6=30. Which sta	tement below i	s true?
a) the array has 5 rowsb) the array has 5 columnsc) the array has 6 rows of 5d) the quotient of the 5x6 is 30			
7) Mr. Young arranges all the de		oom into 4 equ	al groups of 7.
a) 28 b) 9			
c) 11 d) 35			
8) What is 18 ÷ 6?			
a) 4			
b) 3 c) 24			
d) 12			

9) Which is equivalent to 40?

- a) 8 fives
- b) 9x4
- c) 4 fours
- d) 5x7

10) What is the size of the group in the array below?

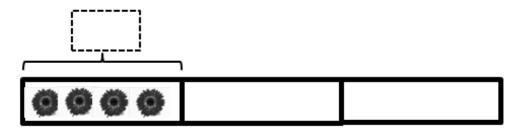
- a) 3
- b) 4
- c) 12
- d) 15

11) Which repeated addition expression matches the multiplication equation below?

5 x 4

- a) 4+4+4+4
- b) 5+5+5
- c) 5+4
- d) 4+4+5

Name:	


Week 6 Day 3 Date: ___

Harvard

Yale

Princeton

Use the diagram below to answer questions 12-14

12) What is the group size?

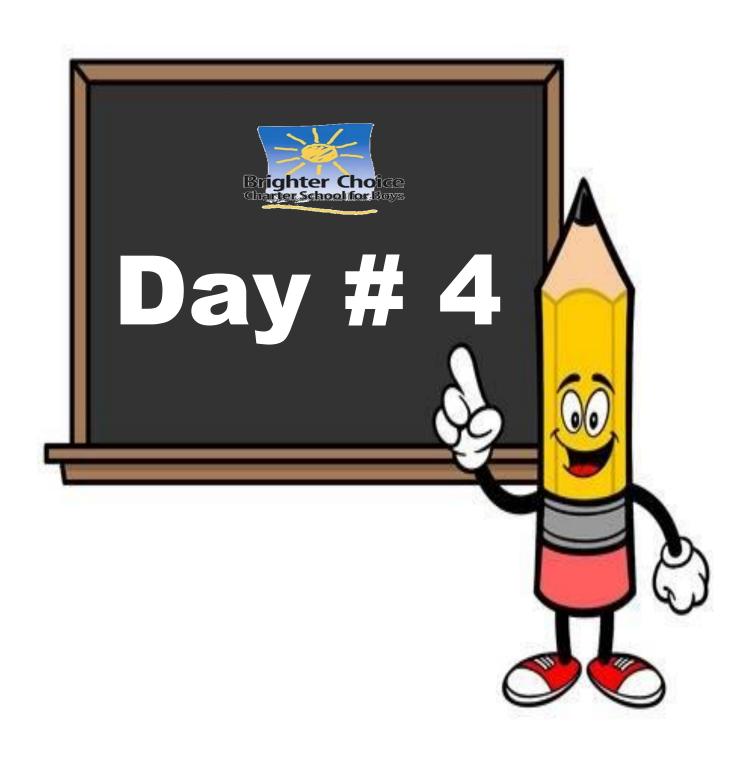
a) 7

BCCS-B

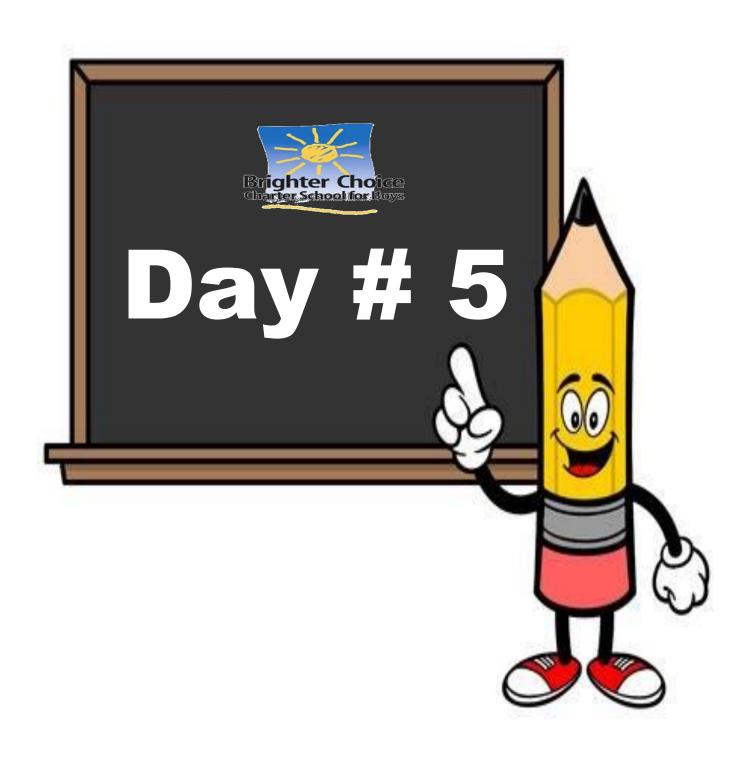
- b) 4
- c) 8
- d) 12

13) What is the number of groups?

- a) 3
- b) 10
- c) 12
- d) 6

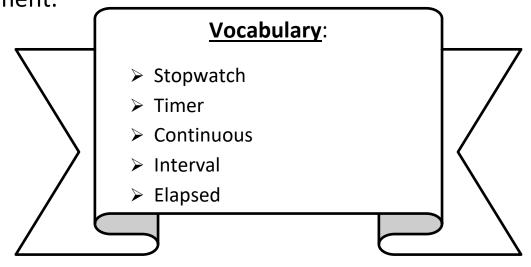

14) What is the product?

- a) 12
- b) 6
- c) 9
- d) 16


Name:			_ Week 6	Day 3 Dat	te:	
BCCS-B			Harvard		Yale	Princeton
15) Mrs. M	Iercado bou	ght 40 stic	kers and sh	e shared 1	them equal	ly among (4)
students. <u>H</u>	low many st	ickers did	each studer	nt get?		
a) 4						
b) 10						
c) 36 d) 28						
ŕ						
	nd label 2 ta				statement i	n the box is
true.		6	$x 3 = 3 \times 6$			
•	Tape Diagra	m #1		Ta	pe Diagran	n #2
] [
17) Draw ar	n array for th	e tape diag	ram below	in the box	provided.	
	2	2	2	2	2	
				2		
						75

Name:	Week 6 Day 3	B Date:	
BCCS-B	Harvard	Yale	Princeton
18) Three friends go pumpkin pumpkins on Sunday. They sh			rday and 9
a. How many pumpkins did t	hey pick in all?		
b. Draw a tape diagram to she	ow the problem.		

c. How many pumpkins does each person get?



The End of Module 1 Assessment Task will be administered in person for hybrid scholars and online through Google Forms for remote scholars.

LEQ: How can I explore time as a continuous measurement?

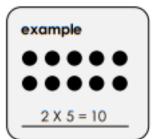
<u>Objective</u>: I can use a timer and a stopwatch to time myself completing different tasks to explore time as a continuous measurement.

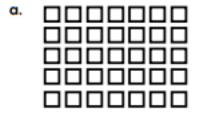
Name: _____

Week 6 Day 5 Date: _____

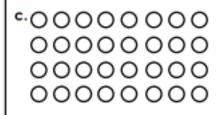
BCCS-B

Harvard

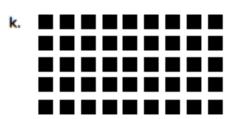

Yale

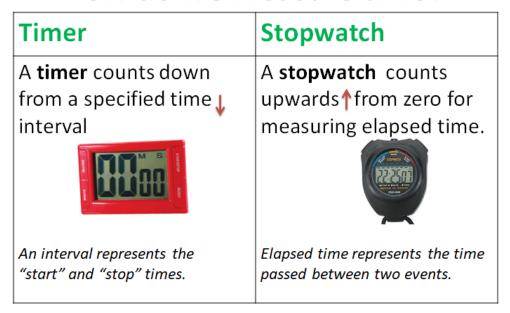

Princeton

Do Now:


Multiplication Arrays

Write the multiplication fact shown by each array.





Name:		Week 6 Day 5	5 Date:	
BCCS-B		Harvard	Yale	Princeton
Input:				
Time is a	m	easurement, which n	neans that it does	s not stop. We use
a	or a	to time s	pecific events. A	timer counts down
and a stopwatch of	counts up. A timer us	ses a specific interval	and a stopwatch	measures
	time or the nassi	ng of time		

How do we measure time?

Understanding the timer and stopwatch we are using today

	Ф STOPWATCH
Os 00	
START RESET	53

Name:	Week 6 Day 5	Date: _	
BCCS-B	Harvard	Yale	Princeton

Z TIMER

30 seconds

Example: How many math vocabulary words can Mrs. Blomgren write in 30 seconds?

- How many triangles can you draw in 30 seconds?
- How many times can you snap your fingers (or clap your hands) in 30 seconds?
- How many colors can you write in 30 seconds?

Ö STOPWATCH

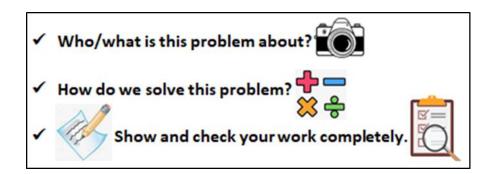
How long does it take you to:

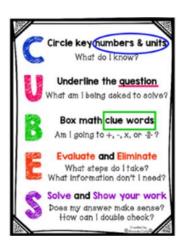
- Write the names of all your teachers this year, including specials?
- Write the numbers 1 through 20?
- Give the nearest person to you a high five?

Name:	Week 6 Day 5	Date:	
BCCS-B	Harvard	Yale	Princeton

Problem Set:

The table to the right shows how much time it takes each of the students to do 15 jumping jacks.


a. Who finished 15 jumping jacks the fastest?


Maya	16 seconds
Riley	15 seconds
Jake	14 seconds
Nicholas	15 seconds
Adeline	17 seconds

b. Who finished their jumping jacks in the exact same amount of time?

c. How many seconds faster did Jake finish than Adeline?

Name:	Week 6 Day 5	Date: _	
RCCS-B	Harvard	Vale	Princeton

Application:

Ms. Moise helps her scholars tie their shoes. It takes her seconds to tie 1shoe. How many seconds does it take Ms. Moise to tie 8 shoes?

Name:	Week 6 Day 5	Date:	
BCCS-B	Harvard	Yale	Princeton

Exit Ticket:

- 1. The table to the right shows how much time it takes each of the students to run 100 meters.
 - a. Who is the fastest runner?

Samantha	19 seconds
Melanie	22 seconds
Chester	26 seconds
Dominique	18 seconds
Louie	24 seconds

b. Who is the slowest runner?

c. How many seconds faster did Samantha run than Louie?

Name:	Week 6 Day	5 Date:	
BCCS-B	Harvard	Yale	Princeton
_			

Homework:

1. List activities at home that take about the following amounts of time to complete. If you do not have a stopwatch, you can use the strategy of counting by 1 Mississippi, 2 Mississippi, 3 Mississippi,

Time	Activities at home
30 seconds	Example: Tying shoelaces
45 seconds	
60 seconds	

2. Jenny can list 13 colors in 1 minute. Jessie can list 25 colors in 1 minute. How many more colors can Jessie list than Jenny?