Name
Brighter Choice Charter School for Boys
\qquad

$4^{\text {th }}$ Grade Math Remote Learning Packet

Week 5

Dear Educator,
My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

Parents please note that all academic are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

Connect while at Home!

Subscribe to my YouTube Channel to catch up with previously taught lessons or refer back to Math concepts if you are to need additional assistance.

Look up by the name of the channel	\longrightarrow	Melissa Lewis

or

With your cell phone open up the camera and focus on the QR code. It will take you to my YouTube channel!	\longrightarrow	

- Please do not separate either packet.
- Please do not remove any pages from either packet.
- Please return both packets completed on the date in which you will pick up the next set of packets.
- All HOMEWORK will be done remotely for the next 2 weeks. You will submit ALL assignment in your google classroom.

Name: \qquad
BCCS-B

Week 5 Day 1 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I use place value understanding and decompose numbers to subtract large numbers?

Objective: I can use place value understanding to fluently decompose to smaller units multiple times in any place using the standard subtraction algorithm, and apply the algorithm to solve word problems using tape diagrams.

Do Now

When the amusement park opened, the number on the counter at the gate read 928,614 . At the end of the day, the counter read 931,682 . How many people went through the gate that day? Use CUBES to solve.
\square

Input

Problem 1:

Directions: Using the tape diagram below, write an equation that best matches the picture. On the lines explain why you below you equation makes sense.

equation:

Name: \qquad
BCCS-B

Week 5 Day 1 Date: \qquad Howard Morehouse Hampton

Input
Explain. \qquad
\qquad
\qquad
Now, solve using the equation that we determined to be correct as a class. Write the correct equation on the line.

Equation: \qquad
Solve:

Problem 2: subtracting across zeros
$1,000-528=$ \qquad

Picture	Place value chart	Standard algorithm

Name:
BCCS-B

Week 5 Day 1 Date: \qquad
Howard Morehouse Hampton
Input

Problem 3

$1,000,000-345,528=$?

Picture	Place value chart	Standard algorithm

CFU

Problem 1:

a.

c.
$\begin{array}{r}242,561 \\ -\quad 44302 \\ \hline\end{array}$
e. $\begin{array}{r}1,000,000 \\ -\quad 592,000 \\ \hline\end{array}$

Name:
BCCS-B

Week 5 Day 1 Date: \qquad
Howard Morehouse Hampton

CFU

Problem 2:

Directions: Choose 1 of the problems from problem 1 and draw a tape diagram to match.

The problem that I chose was problem \qquad .

Tape Diagram

Application problem

Last year, there were 620,073 people in attendance at a local parade. This year, there were 456,795 people in attendance. How many more people were in attendance last year?

Name: \qquad
BCCS-B

Week 5 Day 1 Date: \qquad
Howard Morehouse Hampton

Exit Ticket

Draw a tape diagram to model the problem and then solve.

1. $956,204-780,169=$ \qquad

Tape Diagram	Stack and Solve

2. A construction company was building a stone wall on Main Street. 100,000 stones were delivered to the site. On Monday, they used 15,631 stones. How many stones remain for the rest of the week? Use CUBES to solve.

Name: \qquad
BCCS-B

Week 5 Day 1 Date: \qquad
Howard Morehouse Hampton

HOMEWORK

1. Use the standard subtracting to solve the problems below.
a.
9,656
b.
59,656
c. $\quad 759,656$
$-\quad 5,880$

- 579.989

2. A fishing boat was out to sea for 6 months and traveled a total of 8,578 miles. In the first month, the boat traveled 659 miles. How many miles did the fishing boat travel during the remaining 5 months? Use CUBES to solve.

Name: \qquad
BCCS-B

Week 5 Day 2 Date: \qquad Howard Morehouse Hampton

Learning Target: How can I use place value understanding and decompose numbers to subtract large numbers?

Objective: I can solve two-step word problems using the standard subtraction algorithm fluently modeled with tape diagrams, and assess the reasonableness of answers using rounding.

Do Now

For the weekend basketball playoffs, a total of 61,941 tickets were sold. 29,855 tickets were sold for Saturday's games. The rest of the tickets were sold for Sunday's games. How many tickets were sold for Sunday's games?

Input

Problem 1:

A company has 3 locations with 70,010 employee's altogether. The first location has 34,857 employees. The second location has 17,595 employees. How many employees work in the third location?

Things I know	What I am being asked to find

Name: \qquad
BCCS-B
Week 5 Day 2 Date: \qquad
Howard Morehouse Hampton

Input

Today we are going to working on solving multi-step word problems. One way to tell whether or not we need to do more than \qquad step is based on how much \qquad the problem gives us.

This problem is a \qquad step problem. Let's solve using \qquad .

A company has 3 locations with 70,010 employee's altogether. The first location has 34,857 employees. The second location has 17,595 employees. How many employees work in the third location?

C
U
B
E
S

Problem 2:

Owen's goal is to have 1 million people visit his new website within the first four months of it being launched. Below is a chart showing the number of visitors each month. How many more visitors does he need in Month 4 to reach his goal?

Month	Month 1	Month 2	Month 3	Month 4
Visitors	228,211	301,856	299,542	

Name:
BCCS-B

Week 5 Day 2 Date: \qquad
Howard Morehouse Hampton

CFU

Problem 1:

On Monday, a farmer sold 25,196 pounds of potatoes. On Tuesday, he sold 18,023 pounds. On Wednesday, he sold some more potatoes. In all, he sold 62,409 pounds of potatoes. How many potatoes did the farmer sell on Wednesday? Use CUBES to solve.

Problem 2:

A gas station had two pumps. Pump A dispensed 241,752 gallons. Pump B dispensed 113,916 more gallons than Pump A. Exactly how many gallons to both pumps dispense? Use CUBES to solve.

Name: \qquad
BCCS-B

Week 5 Day 2 Date: \qquad
Howard Morehouse Hampton

Exit Ticket

EdLight

Directions: Solve and then submit on delight.
Quarterback Brett Favre passed for 71,838 yards between the years 1991 and 2011. His all-time high was 4,413 passing yards in one year. In his second highest year, he threw 4,212 passing yards.

Exactly how many passing yards did he throw in the remaining years?

Name: \qquad
BCCS-B

Week 5 Day 2 Date: \qquad

HOMEWORK

1. Zachary's final project for a college course took three months to write and had 95,234 words. Zachary wrote 35,295 words the first month and 19,240 words the second month.
a. Round each value to the nearest ten thousand to estimate about how many words Zachary wrote during the third month of the semester.
b. Find the exact number of words written during the third month of the semester.

Name: \qquad
BCCS-B

Week 5 Day 3 Date: \qquad Howard Morehouse Hampton

Learning Target: How can I use CUBES to solve addition and subtraction word problems?

Objective: I can solve addition word problems using CUBES and tape diagrams to model.

DO NOW

A bakery used $12,674 \mathrm{~kg}$ of flour. Of that, $1,802 \mathrm{~kg}$ was whole wheat and 888 kg was rice flour. The rest was all-purpose flour. How much all-purpose flour did they use? Use CUBES to solve.

Input

Look at the phrases below:
How much more
How many fewer
How much more \square
How much longer

All of these phrases have something in common. Take 1 minute to think about what you think they might have in common. In the box write your thoughts.

Name:
BCCS-B

Week 5 Day 3 Date: \qquad
Howard Morehouse Hampton

Input

Problem 1:

Sean's school raised $\$ 32,587$. Leslie's school raised $\$ 18,749$. How much more money did Sean's school raise? Use CUBES to solve.
\square

Problem 2:

At a parade, 97,853 people sat in bleachers. 388,547 people stood along the street. How many fewer people were in the bleachers than standing along the street?

Name: \qquad
BCCS-B

Week 5 Day 3 Date: \qquad
Howard Morehouse Hampton

CFU

A pair of hippos weighs 5,201 kilograms together. The female weighs 2,038 kilograms. How much more does the male weigh than the female?

Exit Ticket

A mixture of 2 chemicals measures 1,034 milliliters. It contains some of Chemical A and 755 milliliters of Chemical B. How much less of Chemical A than Chemical B is in the mixture?

Name: \qquad
BCCS-B

Week 5 Day 3 Date: \qquad
Howard Morehouse Hampton

EdLight

Homework

Draw a tape diagram to represent each problem. Use numbers to solve, and write your answer as a statement.

1. Gavin has 1,094 toy building blocks. Avery only has 816 toy building blocks. How many more building blocks does Gavin have?
2. Container B holds 2,391 liters of water. Together, Container A and Container B hold 11,875 liters of water. How many more liters of water does Container A hold than Container B?

Name: \qquad
BCCS-B

Week 5 Day 4 Date: \qquad Howard Morehouse Hampton

Learning Target: How can I prove my understanding of the skills taught?
Objective: I can demonstrate my understanding of topic D-F by scoring 80\% or more on my quiz.

DO NOW

34,698

71,840
+
$527+275+752$

97,684
$-47,705$
124,060
$-31,117$

Name:
BCCS-B

Week 5 Day 4 Date: \qquad Howard Morehouse Hampton

Input

A baseball stadium sold some burgers. 2,806 were cheeseburgers. 1,679 burgers didn't have cheese. How many burgers did they sell in all?

Chuck's mom spent $\$ 19,155$ on a new car. She had $\$ 30,064$ in her bank account. How much money does Chuck's mom have after buying the car?

Name: \qquad
BCCS-B

Week 5 Day 5 Date: \qquad Howard Morehouse Hampton

Learning Target: How can I use CUBES to solve addition and subtraction word problems?

Objective: I can solve multi-step word problems using CUBES and rounding to assess for reasonableness.

Do Now

In all, 30,436 people went skiing in February and January. 16,009 went skiing in February. How many fewer people went skiing in January than in February?

Input

What does is mean for something to be reasonable? On the lines below, write what you think in means to be reasonable.

I think that reasonable means \qquad

Now, we will watch a video. Evaluate your answer with what is explained in the video. We will write our own definition at the after.

Name:
BCCS-B

Week 5 Day 5 Date: \qquad
Howard Morehouse Hampton

Reasonableness is \qquad

Problem 1

In one year, a factory used 11,650 meters of cotton, 4,950 fewer meters of silk than cotton, and 3,500 fewer meters of wool than silk. How many meters in all were used of the three fabrics? Use CUBES to solve, check for reasonableness by rounding to the nearest 1000s place.

Exact answer	Estimated answer

Name: \qquad
BCCS-B
Week 5 Day 5 Date: \qquad
Howard Morehouse Hampton

Input

Problem 2

The shop sold 12,789 chocolate and 9,324 cookie dough cones. It sold 1,078 more peanut butter cones than cookie dough cones and 999 more vanilla cones than chocolate cones. What was the total number of ice cream cones sold?

Use CUBES to solve, check for reasonableness by rounding to the nearest 1000s place.

Exact answer	Estimated answer

CFU

1. In one year, the factory used 11,650 meters of cotton, 4,950 fewer meters of silk than cotton, and 3,500 fewer meters of wool than silk. How many meters in all were used of the three fabrics?

Name:
BCCS-B

Week 5 Day 5 Date:
Howard Morehouse Hampton

CFU

2. Is your answer to problem 1 reasonable? Prove your thinking by rounding to the nearest thousands place.
3. The shop sold 12,789 chocolate and 9,324 cookie dough cones. It sold 1,078 more peanut butter cones than cookie dough cones and 999 more vanilla cones than chocolate cones. What was the total number of ice cream cones sold?

Name: \qquad BCCS-B

Week 5 Day 5 Date: \qquad
Howard Morehouse Hampton

Exit Ticket

EdLight

Park A covers an area of 4,926 square kilometers. It is 1,845 square kilometers larger than Park B. Park C is 4,006 square kilometers larger than Park A.

1. What is the exact area of all three parks?
2. Check your answer for reasonableness by rounding to the nearest thousands place.

Name: \qquad
BCCS-B

Week 5 Day 5 Date: \qquad
Howard Morehouse Hampton

Homework

Draw a tape diagram to represent each problem. Use numbers to solve, and write your answer as a statement.

1. There were 22,869 children, 49,563 men, and 2,872 more women than men at the fair. How many people were at the fair?
2. Number A is 4,676 . Number B is 10,043 greater than A. Number C is 2,610 less than B. What is the total value of numbers A, B, and C ?

Name
Brighter Choice
\qquad

$4^{\text {th }}$ Grade Math Remote Learning Packet

Week 6

Connect while at Home!

Subscribe to my YouTube Channel to catch up with previously taught lessons or refer back to Math concepts if you are to need additional assistance.

Look up by the name of the channel	\longrightarrow	Melissa Lewis

or

With your cell phone open up the camera and focus on the QR code. It will take you to my YouTube channel!	\longrightarrow	

- Please do not separate either packet.
- Please do not remove any pages from either packet.
- Please return both packets completed on the date in which you will pick up the next set of packets.
- All HOMEWORK will be done remotely for the next 2 weeks. You will submit ALL assignment in your google classroom.

Name: \qquad
BCCS-B

Week 6 Day 1 Date: \qquad Howard Morehouse Hampton

Learning Target: How do I write numbers in various? How do I compare numbers using place value?

Objective: I can write numbers in various forms and compare numbers using what I know about place value.

Do Now

Directions: Rewrite each problem vertically and then solve.

$13,458+24,902$	$145,930+218,456$	$523,839+78,234$

Input

We have learned that there are 3 different ways to write numbers. Below we will write the definitions of each.

Standard form: \qquad
Ex. \qquad
Word form:
Ex. \qquad
Expanded form: \qquad
Ex. \qquad

Name: \qquad
BCCS-B

Week 6 Day 1 Date: \qquad
Howard Morehouse Hampton

Input

Standard Form	Word Form	Expanded Form
	two thousand, four hundred eighty	
604,016	sixty-four thousand, one hundred six	

Name: \qquad
BCCS-B

Week 6 Day 1 Date: \qquad
Howard Morehouse Hampton

Input

In this unit we also learned how to compare numbers. Let's review the tool kit we used to compare numbers.

Comparing Large Numbers

1. Make sure both numbers are written in standard form. (if not do so)
2. Stack the numbers (2 or more)
3. Starting with the largest unit, look for the first place they are different.
4. Circle the digits in the place that they are different first.
5. Compare those digits

The 3 symbols that we use to write comparison statements are:

We use the > symbol when the
\qquad
We use the < symbol when the \ldots number comes first.
We use the = symbol when the \ldots ___ of both numbers are the same.

1. Compare the two numbers by using the symbols $<,>$, and $=$. Write the correct symbol in the circle.
a. 342,001 \square 94,981
b. $500,000+80,000+9,000+100$
 five hundred eight thousand, nine hundred one

Name: \qquad
BCCS-B

Week 6 Day 1 Date: \qquad
Howard Morehouse Hampton

Input

2. Arrange these numbers from least to greatest:

$$
8,002 \quad 2,080 \quad 820 \quad 2,008 \quad 8,200
$$

Answer: \qquad
CFU

1. Complete the following chart:

Standard Form	Word Form	Expanded Form
	five thousand, three hundred seventy	
		$50,000+300+70+2$
770,070		
309,017		

Name: \qquad
BCCS-B

Week 6 Day 1 Date: \qquad
Howard Morehouse Hampton

CFU

2. 9 hundred thousands 8 thousands 9 hundreds 3 tens

3. 9 hundreds 5 ten thousands 9 ones $\square 6$ ten thousands 5 hundreds 9 ones
4. Arrange these numbers from greatest to least:

$$
728,000 \quad 708,200 \quad 720,800 \quad 87,300
$$

Application Problem

The areas of the 50 states can be measured in square miles.

California is 158,648 square miles. Nevada is 110,567 square miles. Arizona is 114,007 square miles. Arrange the states in order from least area to greatest area.

Answer: \qquad

Name: \qquad
BCCS-B

Week 6 Day 1 Date: \qquad
Howard Morehouse Hampton

Exit Ticket

EdLight

Use each of the digits $5,4,3,2,1$ exactly once to create two different five-digit numbers.
a. Write each number on the line, and compare the two numbers by using the symbols < or >.

Write the correct symbol in the circle.
\qquad

b. Circle one of the numbers from the comparison in part A and write that number in expanded and word form below.

Expanded form: \qquad

Word form: \qquad
\qquad

Name: \qquad Week 6 Day 1 Date: \qquad
BCCS-B Howard Morehouse Hampton

Homework

1. Write the number below in word form and standard form:

$$
800,000+6,000+300+2
$$

Standard form: \qquad
Word form : \qquad
2. Use the information in the chart below to list the height, in feet, of each skyscraper from shortest to tallest. Then, name the tallest skyscraper.

Name of Skyscraper	Height of Skyscraper (ft)
Willis Tower	$1,450 \mathrm{ft}$
One World Trade Center	$1,776 \mathrm{ft}$
Taipei 101	$1,670 \mathrm{ft}$
Petronas Towers	$1,483 \mathrm{ft}$

Answer: \qquad
The tallest skyscraper is \qquad .

Name: \qquad Week 6 Day 2 Date: \qquad
BCCS-B
Howard Morehouse Hampton
Learning Target: How can I round multi-digit numbers to various places?

Objective: I can use a number line or rules to round multi-digit numbers to various places.

Do Now

$5,930-494$	$10,000-2,394$	$189,349-11,384$

Input

In class we learned 2 different ways to round. Let's review the steps in those tool kits together.

Rounding with a Vertical Number Line

1. Fill in the bottom end point by determining how many thousands, 10 thousands or 100 thousands are in the number.
2. Add 1000, 10 thousands or 100 thousand more to that bottom end point, fill in the top endpoint.
3. Midpoint- what number comes halfway between the 2 endpoints on the number line?
4. Compare the number to the mid point
5. Plot above if the number is greater or below if the number is less than the midpoint 6. Round up or down based on where your number is on the number line

Rounding with Rounding Rules

1. Underline the digit that is in the place that you are rounding to.
2. Point to the neighbor on the right.
3. If the number to the right is 5 or more $(5,6,7,8,9)$ round up (add 1)
4. If the number to the right is less than $5(4,3,2,1,0)$ round down (underlined digit stays the same)

Reminder: Everything before the underlined digit stays the same, everything after the underlined digit changes to a zero.

Name:

BCCS-B

Week 6 Day 2 Date: \qquad

Howard Morehouse Hampton

Input

Directions: Round the following numbers using a vertical number line and rounding rules.

Round to the nearest thousands place:

2,384 \qquad

Vertical number line	Rounding rules

16,934 \qquad

Vertical number line	Rounding rules

Name:

BCCS-B

Week 6 Day 2 Date: \qquad

Howard Morehouse Hampton

Input

Round to the nearest ten thousands place:
23,393 \qquad

Vertical number line	Rounding rules

937,940 \qquad

Vertical number line	Rounding rules

Name: \qquad

BCCS-B

Week 6 Day 2 Date: \qquad

Howard Morehouse Hampton
Input

Round to the nearest hundred thousands place:
172,393 \qquad

Vertical number line	Rounding rules

CFU

Directions: Round the following numbers using a vertical number line OR rounding rules. Show your work for either method

Round to the nearest thousands place:
3,489
18,329

Name: \qquad

BCCS-B

Week 6 Day 2 Date: \qquad
Howard Morehouse Hampton

CFU

Round to the nearest ten thousands place:
93,283 172,393
\square

Directions: Round the following number to the nearest thousands, ten thousands and hundred thousands place:

367,194
Thousands \qquad
Ten thousands \qquad
Hundreds thousands \qquad

Application Problem

Empire Elementary School needs to purchase water bottles for field day. There are 2,142 students. Principal Vadar rounded to the nearest hundred to estimate how many water bottles to order. Will there be enough water bottles for everyone? Explain.

Name:

BCCS-B

Week 6 Day 2 Date: \qquad

Howard Morehouse Hampton

Exit Ticket

Directions: Round the following number to the nearest thousands, ten thousands and hundred thousands place:

237,516
Thousands \qquad
Ten thousands \qquad
Hundreds thousands \qquad

[^0]

Name: \qquad
BCCS-B

Week 6 Day 3 Date: \qquad
Howard Morehouse Hampton

Learning Target: How can I write my own word problems when given an equation or a tape diagram?

Objective: I can write my own word problems when given a tape diagram or an equation.

Do Now

For Jordan to get to his grandparents' house, he has to travel through Albany and Plattsburgh. From Jordan's house to Albany is 189 miles. From Albany to Plattsburgh is 161 miles. If the total distance of the trip is 508 miles, how far from Plattsburgh do Jordan's grandparents live? Use CUBES to solve.

Name:
BCCS-B
\qquad Week 6 Day 3 Date: \qquad
Howard Morehouse Hampton
Input

Problem 1:

Use the tape diagram below to create your own word problem and then solve to find the missing part.

Solve

Name: \qquad
BCCS-B

Week 6 Day 3 Date: \qquad
Howard Morehouse Hampton

Input

Problem 2:

Draw a tape diagram to match the equation below, write a word problem and solve for the missing part " A ".
$26,854=17,729+3,731+A$
Tape Diagram

Word problem
\qquad
\qquad
\qquad
\qquad
Solve:

Name:

BCCS-B

Week 6 Day 3 Date: \qquad
Howard Morehouse Hampton

CFU
Draw a tape diagram to match the equation below, write a word problem and solve for the missing part " A ".
$248,798=113,205+A+99,937$
Tape Diagram

Word Problem

Solve:

Name: \qquad

BCCS-B

Week 6 Day 3 Date: \qquad Howard Morehouse Hampton

Exit Ticket

Fill in the blanks to the word problem given, using the tape diagram to help, than solve.

At the local botanical gardens, there are \qquad

Redwoods and \qquad Cypresstrees.

There are a total of \qquad Redwood,

Cypress, and Dogwood trees.

How many \qquad
\qquad

Solve:

Name: \qquad

BCCS-B

Week 6 Day 3 Date: \qquad
Howard Morehouse Hampton

Homework

Draw a tape diagram to model the following equation. Create a word problem. Solve for the value of the variable.

$$
27,894+A+6,892=40,392
$$

Tape Diagram:

Word Problem:
\qquad
\qquad
\qquad
\qquad
Solve:

Name:

BCCS-B

Week 6 Day 4 Date:

Howard Morehouse Hampton

Today you are taking you End of Mod 1 SPA. First you are going to complete the multiple choice (Part 1) in your google classroom. You are going to submit the google form to me when you are done. Use the space on this page to work as scrap paper to help solve the questions.

Name:

BCCS-B

Week 6 Day 4 Date: \qquad

Howard Morehouse Hampton

Now, you are going to solve the open response questions. These questions will be submitted using Ed Light. On the next couple of pages you will find space to show your work in. There is one box per question. You will take a picture of each box using ed light and submit them to me.

11a.

11b.

Name: \qquad

BCCS-B

Week 6 Day 4 Date: \qquad

Howard Morehouse Hampton
12.
13.

Name:
BCCS-B

Week 6 Day 5 Date: \qquad
Howard Morehouse Hampton

Learning Target: How can I use CUBES to solve various multiplicative word problems?

Objective: I can use given formulas to find the area and perimeter of rectangles.

Do now

Group count by $3 \mathrm{~s}, 4 \mathrm{~s}$ and 6 s to 24 and then write the skip of each on paper
Skip count by 3 :
\qquad
\qquad
\qquad , , \qquad
\qquad
\qquad
Skip count by 4:
\qquad
\qquad
\qquad
\qquad , \qquad ,

Skip count by 6 :
\qquad
\qquad
\qquad
\qquad
Fill in the missing factor:
$3 x \ldots=12$
$4 x _=12$
$4 x$ \qquad $=24$
$3 x _=24$
$6 x \ldots=12$
$6 x$ \qquad $=24$
$3 x$ \qquad $=18$

Name: \qquad
BCCS-B
Week 6 Day 5 Date: \qquad
Howard Morehouse Hampton

Input

What do you know about a rectangle?
\qquad

Area is \qquad

We find the area of a rectangle by \qquad

Perimeter is \qquad

We find perimeter by \qquad

Problem 1: Review and compare perimeter and area of a rectangle.

On the grid paper provided, draw a rectangle that is 4 units wide and 7 units long. Find the area and perimeter by counting the units on the inside and around the edge.

		-	\square				-		-				
\square													

Area= \qquad Perimeter= \qquad

Name: \qquad

BCCS-B

Week 6 Day 5 Date: \qquad

Howard Morehouse Hampton

Input

Problem 2:

Draw a rectangle on the grid paper provided that is 3 units wide and 9 units long. Find the perimeter using the formula. $\mathrm{P}=\mathrm{s}+\mathrm{s}+\mathrm{s}+\mathrm{s}$

Perimeter= \qquad

Problem 3:

Sketch a rectangle with a width of 5 and an unknown length; mark it with an " x " and a perimeter of 26 .
$X=$ \qquad

Name:
BCCS-B

Week 6 Day 5 Date: \qquad
Howard Morehouse Hampton
Input

Problem 4:

Sketch a rectangle that has a side length of:
2 by 4 and find the area using the formula $1 \times w$.

Sketch a rectangle that has a side length of:
5 by 6 and find the area using the formula $1 \times w$

Problem 5:

Sketch a rectangle with a width of 10 and an area of 50 . Mark the length with an X , determine the length of the missing side.

Name:

BCCS-B
\qquad Week 6 Day 5 Date: \qquad

Howard Morehouse Hampton

CFU

Problem 1: Find the area and perimeter of a rectangle with side lengths of:
5 by 6 and 3 by 8 , use the rectangles below.

Area= \qquad
Area= \qquad

Perimeter= \qquad Perimeter= \qquad

Problem 2: Find the perimeter of a rectangle with a width of 166 m and a length 99m.

Problem 3: Given the area of 49sqcm and a side length of 7 cm , what is the missing side length. What is this shape called, how do you know?

The shape is called a \qquad . I know because \qquad

Name: \qquad BCCS-B

Week 6 Day 5 Date: \qquad
Howard Morehouse Hampton

Application Problem

Sam had a picture that he wanted to build a frame for. The length of the picture was 24 cm and the width was 17 cm . How much framing would Sam need to go all the way around the picture?

Exit Ticket

1. Find the area of the rectangle below

2. Find the perimeter of the rectangle below.

347 m

Name: \qquad BCCS-B

Week 6 Day 5 Date: \qquad

Howard Morehouse Hampton

Homework

1. Find the area and perimeter of each of the rectangles below.

a. $\mathrm{A}=$ \qquad
b. $\quad \mathbf{P}=$ \qquad

[^0]: *Tonight's HW will be done on a google form. Go to your google classroom to complete your homework.*

