

Name\_\_\_

# 4<sup>th</sup> Grade Math Remote Learning Packet

Week 3



Dear Educator,

My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

(Parent Signature)

(Date)

Parents please note that all academic are also available on our website at <u>www.brighterchoice.org</u> under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

## Connect while at Home!

Subscribe to my YouTube Channel to catch up with previously taught lessons or refer back to Math concepts if you are to need additional assistance.



| Look up by the name of the channel                                                                                 | $\rightarrow$     | Melissa Lewis |
|--------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
|                                                                                                                    | or                |               |
| With your cell phone open<br>up the camera and focus on<br>the QR code. It will take you<br>to my YouTube channel! | $\longrightarrow$ |               |



- Please do not separate either packet.
- Please do not remove any pages from either packet.
- Please return both packets completed on the date in which you will pick up the next set of packets.



Week 3 Day 1 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

**LEQ:** How can place value help make rounding multi-digit numbers easier.

**Objective:** I can use my understanding of place value to round multi-digit numbers to any place.

#### Do Now

Number Correct: \_\_\_\_\_

Find the Midpoint

| 1.  | 0    | 10   |  |
|-----|------|------|--|
| 2.  | 0    | 100  |  |
| 3.  | 0    | 1000 |  |
| 4.  | 10   | 20   |  |
| 5.  | 100  | 200  |  |
| 6.  | 1000 | 2000 |  |
| 7.  | 30   | 40   |  |
| 8.  | 300  | 400  |  |
| 9.  | 400  | 500  |  |
| 10. | 20   | 30   |  |
| 11. | 30   | 40   |  |
| 12. | 40   | 50   |  |
| 13. | 50   | 60   |  |
| 14. | 500  | 600  |  |
| 15. | 5000 | 6000 |  |
| 16. | 200  | 300  |  |

| 23. | 6000 | 7000   |  |
|-----|------|--------|--|
| 24. | 600  | 700    |  |
| 25. | 60   | 70     |  |
| 26. | 260  | 270    |  |
| 27. | 9260 | 9270   |  |
| 28. | 80   | 90     |  |
| 29. | 90   | 100    |  |
| 30. | 990  | 1000   |  |
| 31. | 9990 | 10,000 |  |
| 32. | 440  | 450    |  |
| 33. | 8300 | 8400   |  |
| 34. | 680  | 690    |  |
| 35. | 9400 | 9500   |  |
| 36. | 3900 | 4000   |  |
| 37. | 2450 | 2460   |  |
| 38. | 7080 | 7090   |  |

Week 3 Day 1 Date: \_\_\_\_\_

Howard Morehouse Hampton

#### **Do Now Continued**

## В

BCCS-B

Find the Midpoint

| 1.  | 10   | 20   |  |
|-----|------|------|--|
| 2.  | 100  | 200  |  |
| 3.  | 1000 | 2000 |  |
| 4.  | 20   | 30   |  |
| 5.  | 200  | 300  |  |
| 6.  | 2000 | 3000 |  |
| 7.  | 40   | 50   |  |
| 8.  | 400  | 500  |  |
| 9.  | 500  | 600  |  |
| 10. | 30   | 40   |  |
| 11. | 40   | 50   |  |
| 12. | 50   | 60   |  |
| 13. | 60   | 70   |  |
| 14. | 600  | 700  |  |
| 15. | 6000 | 7000 |  |
| 16. | 300  | 400  |  |
|     |      |      |  |

| Number Correct: |  |
|-----------------|--|
|-----------------|--|

Improvement: \_\_\_\_\_

| 23. | 7000 | 8000   |  |
|-----|------|--------|--|
| 24. | 700  | 800    |  |
| 25. | 70   | 80     |  |
| 26. | 270  | 280    |  |
| 27. | 9270 | 9280   |  |
| 28. | 80   | 90     |  |
| 29. | 90   | 100    |  |
| 30. | 990  | 1000   |  |
| 31. | 9990 | 10,000 |  |
| 32. | 450  | 460    |  |
| 33. | 8400 | 8500   |  |
| 34. | 580  | 590    |  |
| 35. | 9500 | 9600   |  |
| 36. | 2900 | 3000   |  |
| 37. | 3450 | 3460   |  |
| 38. | 6080 | 6090   |  |

BCCS-B

Week 3 Day 1 Date: \_\_\_\_\_

Howard Morehouse Hampton

#### Input

| <u>Round</u> | ing with a Vertical Number Line    |
|--------------|------------------------------------|
| 1.           | Determine the lower endpoint       |
|              | and fill it in.                    |
| 2.           | Determine the top endpoint and     |
|              | fill it in.                        |
| 3.           | Determine the midpoint and fill it |
|              | in.                                |
| 4.           | Ask yourself "is the number you    |
|              | are rounding greater than or less  |
|              | that the midpoint?"                |
| 5.           | If its greater, plot above the     |
|              | midpoint, if it's less plot below  |
|              | the midpoint.                      |
| 6.           | If you plot above your round up,   |
|              | if you plot below you round down.  |

Problem 1: round a 5 or 6 digit number to the nearest ten thousands place

Let's try a six digit number: 337,601 rounds to \_\_\_\_\_

72,744 rounds to \_\_\_\_\_

Week 3 Day 1 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

## **Input Continued**

Problem 2: 6 digit number to the nearest hundred thousand

749,085 rounds to \_\_\_\_\_



CFU

Complete each statement by rounding the number to the given place value. Use the number line to show your work.

- a. 53,000 rounded to the nearest ten thousand is \_\_\_\_\_\_.

 a. 240,000 rounded to the nearest hundred thousand is \_\_\_\_\_\_.



|    | Name:                                         |    | Week 3 Day 1 Date:                                 |
|----|-----------------------------------------------|----|----------------------------------------------------|
|    | BCCS-B                                        |    | Howard Morehouse Hampton                           |
|    | CFU continue                                  | ed |                                                    |
| b. | 42,708 rounded to the nearest ten thousand is | b. | 449,019 rounded to the nearest hundred thousand is |
|    |                                               |    |                                                    |

## **Application Problem**

975,462 songs were downloaded in one day. Round this number to the nearest hundred thousand to estimate how many songs were downloaded in one day. Use a number line to show your work.



| Name:  | Week 3 Day 1 Date:       |
|--------|--------------------------|
|        |                          |
| BCCS-B | Howard Morehouse Hampton |

**Exit Ticket** 

1. Round to the nearest ten thousand. Use the number line to model your thinking.



2. Round to the nearest hundred thousand. Use the number line to model your thinking.



Week 3 Day 1 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

#### Homework

Complete each statement by rounding the number to the given place value. Use the number line to show your work.

- a. 67,000 rounded to the nearest ten thousand is \_\_\_\_\_.
- 2. a. 867,000 rounded to the nearest hundred thousand is \_\_\_\_\_.



b. 51,988 rounded to the nearest ten thousand is \_\_\_\_\_.



 b. 767,074 rounded to the nearest hundred thousand is \_\_\_\_\_\_.

 491,852 people went to the water park in the month of July. Round this number to the nearest hundred thousand to estimate how many people went to the park. Use a number line to show your work.



Week 3 Day 2 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

**Learning Target:** How can place value help make rounding multi-digit numbers easier.

**Objective**: I can use place value and rounding rules to round to any place value.

#### Do Now

34,123 people attended a basketball game. 28,310 people attended a football game. About how many people attended the basketball game? About how many people attended the football game? Round to the nearest ten thousand to find the answer. Show your work in the space below.

We will do this part together:

About how many people attended both games in all?-show how to find estimated sums.

BCCS-B

Week 3 Day 2 Date: \_\_\_\_\_

## Howard Morehouse Hampton

#### Input

#### **Rounding Rules**

- 1. Underline the digit in the place value you are rounding to.
- 2. Point to its neighbor to the right.
- 3. If the neighbor is 5 or more, round up
- 4. If the neighbor is 4 or less, round down.
- 5. Everything after the place you are rounding to changes to a zero
- Everything before the place you are rounding to, stays the same.

## Problem 1:

Round 4,333 to the nearest thousand without using a number line. Show your work.

Round 346,560 to the nearest thousand without using a number line. Show your work.

| Name: |  |
|-------|--|
|-------|--|

Week 3 Day 2 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

#### **Input Continued**

## Problem 2:

65,600 to the nearest ten thousand without using a number line. Show you work.

147,591 to the nearest hundred thousand without using a number line. Show your work.

#### CFU

- 1. Round to the nearest thousand.
  - a. 5,300 ≈\_\_\_\_\_
  - c. 42,099 ≈ \_\_\_\_\_
- 2. Round to the nearest ten thousand.
  - a. 26,000 ≈ \_\_\_\_\_
  - c. 789,091 ≈\_\_\_\_\_

| Name: |  |  |
|-------|--|--|
|-------|--|--|

Week 3 Day 2 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

#### **CFU Continued**

- 3. Round to the nearest hundred thousand.
  - a. 840,000 ≈\_\_\_\_\_
  - c. 761,004 ≈\_\_\_\_\_

#### **Application Problem**

The 2012 Super Bowl had an attendance of just 68,658 people. If the headline in the newspaper the next day read, "About 70,000 People Attend Super Bowl," how did the newspaper round to estimate the total number of people in attendance?

| Name:                                     | _           | Week 3 Day 2 Date:       |
|-------------------------------------------|-------------|--------------------------|
| BCCS-B                                    |             | Howard Morehouse Hampton |
|                                           | Exit Ticket |                          |
| 1. Round 765,903 to the given place value | :           |                          |
| Thousand                                  |             |                          |
| Ten thousand                              |             |                          |
| Hundred thousand                          |             |                          |
|                                           |             |                          |
|                                           | Homework    |                          |
| 1. Round to the nearest thousand.         |             |                          |
| a. 6,842 ≈                                | b.          | 2,722 ≈                  |
| c. 16,051 ≈                               | d.          | 706,421 ≈                |
|                                           |             |                          |
|                                           |             |                          |
| 2. Round to the nearest ten thousand.     |             | ar aat                   |
| a. 88,999 ≈                               | D.          | 85,001 ≈                 |
| c. 789,091 ≈                              | d.          | 905,154 ≈                |
|                                           |             |                          |
| 3. Round to the nearest hundred thousan   | d.          |                          |
| a. 89,659 ≈                               | _           |                          |
| c. 617,889 ≈                              | _           |                          |

16



Week 3 Day 3 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

**Learning Target:** How can place value help make rounding multi-digit numbers easier?

**Objective:** I can Use place value understanding to round multi-digit numbers to any place value using real world applications.

#### DO NOW



Round to the Nearest 10,000

| 1.  | 21,000 ≈  |  |
|-----|-----------|--|
| 2.  | 31,000 ≈  |  |
| 3.  | 41,000 ≈  |  |
| 4.  | 541,000 ≈ |  |
| 5.  | 49,000 ≈  |  |
| 6.  | 59,000 ≈  |  |
| 7.  | 69,000 ≈  |  |
| 8.  | 369,000 ≈ |  |
| 9.  | 62,000 ≈  |  |
| 10. | 712,000 ≈ |  |
| 11. | 28,000 ≈  |  |
| 12. | 37,000 ≈  |  |
| 13. | 137,000 ≈ |  |
| 14. | 44,000 ≈  |  |
|     |           |  |

| 23. | 185,000 ≈ |  |
|-----|-----------|--|
| 24. | 85,000 ≈  |  |
| 25. | 95,000 ≈  |  |
| 26. | 97,000 ≈  |  |
| 27. | 98,000 ≈  |  |
| 28. | 198,000 ≈ |  |
| 29. | 798,000 ≈ |  |
| 30. | 31,200 ≈  |  |
| 31. | 49,300 ≈  |  |
| 32. | 649,300 ≈ |  |
| 33. | 64,520 ≈  |  |
| 34. | 164,520 ≈ |  |
| 35. | 17,742 ≈  |  |
| 36. | 917,742 ≈ |  |
|     |           |  |

Number Correct: \_\_\_\_\_

Week 3 Day 3 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

#### **Do Now Continued**

# B

Number Correct: \_\_\_\_\_

Improvement: \_\_\_\_\_

Round to the Nearest 10,000

| 1.  | 11,000 ≈  |  |
|-----|-----------|--|
| 2.  | 21,000 ≈  |  |
| 3.  | 31,000 ≈  |  |
| 4.  | 531,000 ≈ |  |
| 5.  | 39,000 ≈  |  |
| 6.  | 49,000 ≈  |  |
| 7.  | 59,000 ≈  |  |
| 8.  | 359,000 ≈ |  |
| 9.  | 52,000 ≈  |  |
| 10. | 612,000 ≈ |  |
| 11. | 18,000 ≈  |  |
| 12. | 27,000 ≈  |  |
| 13. | 127,000 ≈ |  |
| 14. | 34,000 ≈  |  |

| 23. | 185,000 ≈               |  |
|-----|-------------------------|--|
| 24. | 85,000 ≈                |  |
| 25. | 95,000 ≈                |  |
| 26. | 96,000 ≈                |  |
| 27. | 99,000 ≈                |  |
| 28. | 199,000 ≈               |  |
| 29. | 799,000 ≈               |  |
| 30. | 21,200 ≈                |  |
| 31. | 39,300 ≈                |  |
| 32. | <mark>6</mark> 39,300 ≈ |  |
| 33. | 54,520 ≈                |  |
| 34. | 154,520 ≈               |  |
| 35. | 27,742 ≈                |  |
| 36. | 927,742 ≈               |  |
|     |                         |  |

| Name: |  |
|-------|--|
|-------|--|

Week 3 Day 3 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

#### Input



How many pizza pies would I have to get if I plan on

having 54 people at my party? \_\_\_\_\_

**Problem 1:** Round one number to multiple units.

| Round 935,292 to:        |  |
|--------------------------|--|
| Hundred thousand $pprox$ |  |
| Ten thousand 💝           |  |
| Thousand 🚧               |  |

| Name: |  |
|-------|--|
|-------|--|

Week 3 Day 3 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

#### **Input Continued**

**Problem 2:** Determine the best estimate to solve a word problem.

In the year 2012, there were 935,292 visitors to the White House.

Assume that each visitor is given a White House map. Now, use this information to predict the number of White House maps needed for visitors in 2013.

What might we need to round to make sure there are enough maps for each visitor?

| Round 935,292 🚧 _ |  |  |
|-------------------|--|--|
|-------------------|--|--|

Problem 3: Choose a unit of rounding to solve a word problem.

2,837 students attend Lincoln Elementary school.

Take a minute to think about how we would estimate the number of chairs needed in the school.

What are the 3 different units we could round to? \_\_\_\_\_

Which unit would be the best and why? \_\_\_\_\_

Round 2,837 \_\_\_\_\_

| Name:                         | \                               | Neek 3 Day 3 Date:       |
|-------------------------------|---------------------------------|--------------------------|
| BCCS-B                        | H                               | Howard Morehouse Hampton |
|                               | CFU                             |                          |
| 1. Round 543,982 to the near  | est                             |                          |
| a. thousand:                  |                                 |                          |
| b. ten thousand:              |                                 |                          |
| c. hundred thousand:          |                                 |                          |
|                               |                                 |                          |
| 2. Complete each statement by | rounding the number to the give | en place value.          |
| a. 2,841 rounded to the ne    | arest hundred is                |                          |
| b. 32,851 rounded to the n    | earest hundred is               |                          |
| c. 132,891 rounded to the     | nearest hundred is              |                          |
|                               |                                 |                          |

 Empire Elementary School needs to purchase water bottles for field day. There are 2,142 students. Principal Vadar rounded to the nearest hundred to estimate how many water bottles to order. Will there be enough water bottles for everyone? Explain.

| Name: |  |  |
|-------|--|--|
|-------|--|--|

Week 3 Day 3 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

## **Application Problem**

The post office sold 204,789 stamps last week and 93,061 stamps this week. About how many more stamps did the post office sell last week than this week? Explain how you got your answer.

## Exit Ticket

- 1. There are 598,500 Apple employees in the United States.
  - a. Round the number of employees to the given place value.

thousand: \_\_\_\_\_

ten thousand: \_\_\_\_\_\_

hundred thousand: \_\_\_\_\_

| Nan | ne: | Week 3 Day 3 Date:                                                     |
|-----|-----|------------------------------------------------------------------------|
| BCC | S-B | Howard Morehouse Hampton                                               |
|     |     | Homework                                                               |
| 1.  | Ro  | und 845,001 to the nearest                                             |
|     | a.  | thousand:                                                              |
|     | b.  | ten thousand:                                                          |
|     | c.  | hundred thousand:                                                      |
|     |     |                                                                        |
| 2.  | Со  | mplete each statement by rounding the number to the given place value. |
|     | a.  | 783 rounded to the nearest hundred is                                  |
|     | b.  | 12,781 rounded to the nearest hundred is                               |
|     | c.  | 951,194 rounded to the nearest hundred is                              |

- 3. Solve the following problems using pictures, numbers, or words.
  - a. In the 2011 New York City Marathon, 29,867 men finished the race, and 16,928 women finished the race. Each finisher was given a t-shirt. About how many men's shirts were given away? About how many women's shirts were given away? Explain how you found your answers.



| Name:  | Week 3 Day 4 Date:       |
|--------|--------------------------|
|        |                          |
| BCCS-B | Howard Morehouse Hampton |

#### SPA Mid Mod-1

#### Part 1 Multiple Choice

**Directions:** Choose only one answer by circling the correct response. Show your work when needed on your paper.

- 1. Which of the following sets of numbers are correctly ordered from least to greatest?
  - a. 504,054 < 4,450 < 505,045</li>
    b. 4,450 < 505,045 < 504,054</li>
    c. 505,045 < 504,054 < 4,450</li>
    d. 4,450 < 504,054 < 505,045</li>
- 2. Which of the following numbers has an 8 in the hundreds place and a digit that is 10x as much in the thousands place?
  - a. 8,456
  - b. 7,885
  - c. 8,850
  - d. 8,008
- 3. Which comparison below is written correctly?
  - a. 45,098 < 45,009
  - b. 45,009 < 45,098
  - c. 45,009 = 45,098
  - d. 45,690 > 47,894

Week 3 Day 4 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

#### SPA Mid Mod-1

#### Part 1 Multiple Choice continued

- 4. Which of the following statements is true?
  - a. 6 thousands + 4 hundreds > 4 thousands + 6 hundreds
  - b. 1,000,000 < one million
  - c. 10 hundred thousand < 1 thousand
  - d. 7 hundreds 10 tens > 7 hundreds 11 tens
- 5. Which of the following correctly rounds the number 347, 923 to the <u>nearest ten thousands place?</u>
  - a. 300,000
  - b. 340,000
  - c. 350,000
  - d. 347,000
- 6. Which of the following numbers could round to 600,000 when rounded to the nearest 100 thousands place?
  - a. 674,033
  - b. 653,930
  - c. 623,938
  - d. 668,210

Week 3 Day 4 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

#### SPA Mid Mod-1

## Part 1 Multiple Choice continued

- 7. What is 1 thousand more than 34,094?
  - a. 34,194
  - b. 35,094
  - c. 44,094
  - d. 134,094
- 8. Which value is ten times more than 5,400?
  - a. 54,000
  - b. 6,500
  - c. 4,300
  - d. 5,400
- 9. Solve: 498 x 10
  - a. 598
  - b. 4,980
  - c. 49,800
  - d. 488

| Name: |  |
|-------|--|
|-------|--|

Week 3 Day 4 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

#### SPA Mid Mod-1

## Part 1 Multiple Choice continued

- 10. On Monday, Sam read for 23 minutes after school. On Tuesday, he read for ten times the amount he did on Monday. How long did Sam read in all on Monday and Tuesday?
  - a. 460
  - b. 253
  - c. 230
  - d. 53



Now that you have complete Part 1, multiple choice, go to your google classroom and find the google form that says "SPA Mid Mod 1 multiple choice" and fill in the answers you marked from your packet.

| Name:  | Week 3 Day 4 Date:       |
|--------|--------------------------|
|        |                          |
| BCCS-B | Howard Morehouse Hampton |

#### SPA Mid Mod-1

#### Part 2 Open Response

**Directions:** Answer the following questions by using CUBES when you are able to and showing how you got to your answer. Make sure to write your final answer on the answer line provided for each question.

- 11. The football stadium at the Louisiana State University (LSU) has a seating capacity of 92,542.
  - a. Write the seating capacity of the LSU stadium in word form and in expanded form on the lines provided below:

| Word form:       |  |  |
|------------------|--|--|
|                  |  |  |
|                  |  |  |
|                  |  |  |
| Expanded form: _ |  |  |
|                  |  |  |

b. The population of San Jose, CA was approximately 10x the amount of people that the LSU stadium could seat. What was the population of San Jose in 2010?

Answer: \_\_\_\_\_

| Name:  | Week 3 Day 4 Date:       |
|--------|--------------------------|
|        |                          |
| BCCS-B | Howard Morehouse Hampton |

#### SPA Mid Mod-1

#### Part 2 Open Response Continued

 Round 92,542 to the <u>nearest thousands place and to the nearest ten</u> <u>thousands place.</u> Use rounding rules or vertical number lines to do so. <u>Make sure to show how you got your answer</u>.

Thousands \_\_\_\_\_\_

Ten thousands \_\_\_\_\_

 Use each of the digits 5,4,3,2, and <u>1only once</u> to create one five-digit number. Write your number in standard, word and expanded form on the lines provided.

Standard form: \_\_\_\_\_

Word form: \_\_\_\_\_

Expanded form: \_\_\_\_\_

Week 3 Day 4 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton



Now that you have complete Part 2, open response, go to <u>ed light</u> to submit questions 11-13 from pages 30-31 of your packet. DO NOT discard your packet or your test. Please keep all pieces of this test and packet together.

Thank you!

GREAT JOB!!



| Name: |  |  |  |
|-------|--|--|--|
|       |  |  |  |

Week 3 Day 5 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

**Learning Target:** How can I use place value understanding to add large whole numbers?

**Objective:** I can use place value understanding to add multi-digit whole numbers and solve word.

#### Do Now

Meredith kept track of the calories she consumed for two weeks. The first week, she consumed 12,490 calories, and the second week 14,295 calories. How many calories did Meredith consume altogether?

## Input

| Problem 1: finding a | reasonable answer |
|----------------------|-------------------|
|----------------------|-------------------|

What could we round to and why? \_\_\_\_\_\_

| 12,490 |      |  |
|--------|------|--|
|        | <br> |  |
|        |      |  |

14,295\_\_\_\_\_

Week 3 Day 5 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

#### **Input Continued**

Problem 2: Add, renaming once, using place value disks in a place value chart.

3,134 + 2,493= \_\_\_\_\_

| Set up your problem vertically | Draw a tape diagram |
|--------------------------------|---------------------|
|                                |                     |
|                                |                     |
|                                |                     |
|                                |                     |
|                                |                     |
|                                |                     |
|                                |                     |

| 10 thousand | Thousand | Hundred | Tens | Ones |
|-------------|----------|---------|------|------|
|             |          |         |      |      |
|             |          |         |      |      |
|             |          |         |      |      |
|             |          |         |      |      |
|             |          |         |      |      |
|             |          |         |      |      |
|             |          |         |      |      |
|             |          |         |      |      |

Week 3 Day 5 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

## Input Continued

**Problem 3**: Add, renaming in multiple units, using the standard algorithm and the place value chart.

40,762 + 30,473= \_\_\_\_\_

| Set up your problem vertically | Draw a tape diagram |
|--------------------------------|---------------------|
|                                |                     |
|                                |                     |
|                                |                     |
|                                |                     |
|                                |                     |
|                                |                     |
|                                |                     |

**+** 

| 10 thousand | Thousand | Hundred | Tens | Ones |
|-------------|----------|---------|------|------|
|             |          |         |      |      |
|             |          |         |      |      |
|             |          |         |      |      |
|             |          |         |      |      |
|             |          |         |      |      |
|             |          |         |      |      |
|             |          |         |      |      |
|             |          |         |      |      |

Week 3 Day 5 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

#### **Input Continued**

**Problem 4:** Add, renaming multiple units using the standard algorithm.

207,426 + 128,744=?

| Standard algorithm | Tape diagram |
|--------------------|--------------|
|                    |              |
|                    |              |
|                    |              |
|                    |              |
|                    |              |
|                    |              |

## CFU

**Directions:** Solve each of the problems below using a standard algorithm and draw a tape diagram next to the problem in the space provided.

<u>Tape Diagram</u>

6,311

+ 268

6,314

+ 2, 4 9 3

| Name:      |     | Week 3 Day 5 Date:       |
|------------|-----|--------------------------|
| BCCS-B     |     | Howard Morehouse Hampton |
|            | CFU |                          |
| 5 2, 0 9 8 | [   | Tape Diagram             |
| + 6,048    |     |                          |

#### **Application Problem**

The Lane family took a road trip. During the first week, they drove 907 miles. The second week they drove the same amount as the first week plus an additional 297 miles. How many miles did they drive during the second week?

| Name:  | Week 3 Day 5 Date:       |
|--------|--------------------------|
| BCCS-B | Howard Morehouse Hampton |

#### **Exit Ticket**

1. Solve the addition problems below using the standard algorithm.

| a. | 2 3, 6 0 7 | b. 3, 9 | 48 |
|----|------------|---------|----|
|    | + 2,307    | + 2     | 78 |

 The office supply closet had 25,473 large paper clips, 13,648 medium paper clips, and 15,306 small paper clips. How many paper clips were in the closet?

| Name: |  |
|-------|--|
|-------|--|

Week 3 Day 5 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

#### Homework

1. Solve the addition problems below using the standard algorithm.

| a. | 7,909   | b. | 27,909  | с. | 827,909  |
|----|---------|----|---------|----|----------|
|    | + 1,044 |    | + 9,740 |    | + 42,989 |

Draw a tape diagram to represent each problem. Use numbers to solve, and write your answer as a statement.

- At the zoo, Brooke learned that one of the rhinos weighs 4,897 pounds, one of the giraffes weighs 2,667 pounds, one of the African elephants weighs 12,456 pounds, and one of the Komodo dragons weighs 123 pounds.
  - a. What is the combined weight of the zoo's African elephant and the giraffe?



Name\_\_\_

# 4<sup>th</sup> Grade Math Remote Learning Packet

Week 4



Dear Educator,

My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

(Parent Signature)

(Date)

Parents please note that all academic are also available on our website at <u>www.brighterchoice.org</u> under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

## Connect while at Home!

Subscribe to my YouTube Channel to catch up with previously taught lessons or refer back to Math concepts if you are to need additional assistance.



| Look up by the name of the channel                                                                                 | $\rightarrow$     | Melissa Lewis |
|--------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
|                                                                                                                    | or                |               |
| With your cell phone open<br>up the camera and focus on<br>the QR code. It will take you<br>to my YouTube channel! | $\longrightarrow$ |               |



- Please do not separate either packet.
- Please do not remove any pages from either packet.
- Please return both packets completed on the date in which you will pick up the next set of packets.



| Name: |  |  |  |
|-------|--|--|--|
|       |  |  |  |

Week 4 Day 1 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

**Learning Target:** How can I use place value understanding to add large whole numbers?

**Objective:** I can solve multi-step word problems using standard addition algorithms and rounding to assess for reasonableness.

## Do Now

The basketball team raised a total of \$154,694 in September and \$29,987 more in October than in September. How much money did they raise in October? Draw a tape diagram, and write your answer in a complete sentence.

| Tape diagram | Solve | Sentence |
|--------------|-------|----------|
|              |       |          |
|              |       |          |
|              |       |          |
|              |       |          |
|              |       |          |
|              |       |          |
|              |       |          |
|              |       |          |



| Name: | Week 4 Day 1 Date: |
|-------|--------------------|
|       | ·                  |

BCCS-B

Howard Morehouse Hampton

#### Input

**Directions:** Below is the word problem that goes along with the video that we are getting ready to view. Please make your paper look like theirs as they review the steps of CUBES and solve the problem.

Victoria walked 5 blocks from her house to the bus stop. She rode the bus 7 blocks to the library. Later, she came home the same way. How many blocks did Victoria travel in all?

| Name: | Week 4 Day 1 Da | te: |
|-------|-----------------|-----|
|       |                 |     |

BCCS-B

Howard Morehouse Hampton

Input

Problem 1: Solve a multi-step word problem using a tape diagram

The city flower shop sold 14,594 pink roses on Valentine's Day. They sold 7,857 more red roses than pink roses. How many pink and red roses did the city flower shop sell altogether on Valentine's Day? Use a tape diagram and CUBES to show the work.



**Problem 2:** Solve a two-step word problem using a tape diagram, and assess the reasonableness of the answer.

On Saturday, 32,736 more bus tickets were sold than on Sunday. On Sunday, only 17,295 tickets were sold. How many people bought bus tickets over the weekend? Use a tape diagram to show the work.



| Name: |  |  |  |
|-------|--|--|--|
|-------|--|--|--|

Week 4 Day 1 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

Input

**Problem 3:** Solve a multi-step word problem using a tape diagram, and assess reasonableness.

Last year, Big Bill's Department Store sold many pairs of footwear. 118,214 pairs of boots were sold, 37,092 more pairs of sandals than pairs of boots were sold, and 124,417 more pairs of sneakers than pairs of boots were sold. How many pairs of footwear were sold last year?



## CFU

**Directions:** Estimate and then solve each problem. Model the problem with a tape diagram. Explain if your answer is reasonable.

1. For the bake sale, Connie baked 144 cookies. Esther baked 49 more cookies than Connie. About how many cookies did Connie and Esther bake? Estimate by rounding each number to the nearest ten **before** adding.

**c** 

U B

E

s

| Name:  | Week 4 Day 1 Date:                    |  |  |
|--------|---------------------------------------|--|--|
|        | · · · · · · · · · · · · · · · · · · · |  |  |
| BCCS-B | Howard Morehouse Hampton              |  |  |

#### **CFU Continued**

b. For the bake sale, Connie baked 144 cookies. Esther baked 49 more cookies than Connie. Exactly how many cookies did Connie and Esther bake?



## **Application Problem**

Raffle tickets were sold for a school fundraiser to parents, teachers, and students. 563 tickets were sold to teachers. 888 more tickets were sold to students than to teachers. 904 tickets were sold to parents.

About how many tickets were sold to parents, teachers, and students? **Round** each number to the nearest hundred to find your estimate.

Exactly how many tickets were sold to parents, teachers, and students?

| Name: |  |
|-------|--|
|-------|--|

BCCS-B

Week 4 Day 1 Date: \_\_\_\_\_

Howard Morehouse Hampton

## Exit Ticket

**Directions:** Use CUBES to solve the problem below.

In January, Scott earned \$8,999. In February, he earned \$2,387 more than in January. In March, Scott earned the same amount as in February. How much did Scott earn altogether during those three months?



| Name: | Week 4 Day 1 Date: |
|-------|--------------------|
|       |                    |

BCCS-B

Howard Morehouse Hampton

#### Homework

Estimate and then solve each problem. Model the problem with a tape diagram. Explain if your answer is reasonable. Use CUBES to solve

- 1. There were 3,905 more hits on the school's website in January than February. February had 9,854 hits.
  - a. About how many hits did the website have during January and February?

C U B E S

> b. Exactly how many hits did the website have during January and February?





Week 4 Day 2 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

**Learning Target:** How can I use place value understanding and decompose numbers to subtract large numbers?

**Objective:** I can use place value understanding to decompose to smaller units once.

## Do Now

Jennifer texted 5,849 times in January. In February, she texted 1,263 more times than in January. What was the total number of texts that Jennifer sent in the two months combined? Use CUBES to solve.



## Input

**Problem 1:** Use a place value chart and place value disks to model subtracting alongside the algorithm, regrouping 1 hundred into 10 tens.

## 4,259 - 2,171=?

| Set your problem up vertically | Draw a tape diagram |
|--------------------------------|---------------------|
| (standard algorithm)           |                     |
|                                |                     |
|                                |                     |
|                                |                     |
|                                |                     |

Week 4 Day 2 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

#### **Input Continued**

## Problem 1 continued:

4,259 – 2,171

| Thousands | Hundreds | Tens | Ones |
|-----------|----------|------|------|
|           |          |      |      |
|           |          |      |      |
|           |          |      |      |
|           |          |      |      |
|           |          |      |      |
|           |          |      |      |
|           |          |      |      |



Today we are subtracting from our place value chart which means we ONLY are modeling the largest number in the problem. We will show the subtraction from that number of discs.

**Problem 2:** Regroup 1 thousand into 10 hundreds using the subtraction algorithm.

23,422 - 11,510

| Ten thousands | Thousands | Hundreds | Tens | Ones |
|---------------|-----------|----------|------|------|
|               |           |          |      |      |
|               |           |          |      |      |
|               |           |          |      |      |
|               |           |          |      |      |
|               |           |          |      |      |

Week 4 Day 2 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

#### **Input Continued**

#### Problem 2 continued:

23,422 - 11,510

| Standard algorithm | Tape diagram |  |
|--------------------|--------------|--|
|                    |              |  |
|                    |              |  |
|                    |              |  |
|                    |              |  |
|                    |              |  |
|                    |              |  |

**Problem 3**: Solve a subtraction word problem, regrouping 1 ten thousand into 10 thousands

The paper mill produced 73,658 boxes of paper. 8,052 boxes have been sold. How many boxes remain? Use CUBES to solve.



Week 4 Day 2 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

CFU

**Directions:** Solve each of the problems below using the standard algorithm that is provided. Draw a tape diagram to match.

a. 7, 5 2 5 <u>- 3, 5 0 2</u>

d. 4,625 \_-435

g. 23,640 -14,630

## **Application Problem**

During the month of March, 68,025 pounds of king crab were caught. If 15,614 pounds were caught in the first week of March, how many pounds were caught in the rest of the month? Use CUBES to solve.

Week 4 Day 2 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

#### Exit Ticket

**Directions:** Solve using a standard algorithm.

a. 8,512 <u>- 2,501</u>

b. 18,042 - 4,122

c. 8,072 <u>-1,561</u>

| Name:                                                                      |       |    | Week 4 Day 2 Date: |    |         |
|----------------------------------------------------------------------------|-------|----|--------------------|----|---------|
| BCCS-B Howard Morehouse Ham                                                |       |    | rehouse Hampton    |    |         |
|                                                                            |       |    | Homework           |    |         |
| 1. Use the standard algorithm to solve the following subtraction problems. |       |    |                    |    |         |
| а.                                                                         | 2,431 | b. | 422,431            | C. | 422,431 |

<u>- 341</u> <u>- 14,321</u> <u>- 92,420</u>

**Directions:** Use CUBES to solve the problem below.

An elementary school collected 1,705 bottles for a recycling program. A high school also collected some bottles. Both schools collected 3,627 bottles combined. How many bottles did the high school collect?





Week 4 Day 3 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

**Learning Target**: How can I use place value understanding and decompose numbers to subtract large numbers?

**Objective:** I can use place value understanding to decompose into smaller units up to 3x.

## Do Now

**Directions:** Today we are going to solve the first part of our DO NOW together.

In one year, the animal shelter bought 25,460 pounds of dog food. That amount was 10 times the amount of cat food purchased in the month of July. How much cat food was purchased in July?

Now that we know how much cat food was purchased, solve the next part on your own:

If the cats ate 1,462 pounds of the cat food, how much cat food was left? Use CUBES to solve.



Week 4 Day 3 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

Input

Problem 1: Subtract, decomposing twice.

Write 22,397 – 3,745=?

| Standard Algorithm | Tape Diagram |  |
|--------------------|--------------|--|
|                    |              |  |
|                    |              |  |
|                    |              |  |
|                    |              |  |
|                    |              |  |
|                    |              |  |
|                    |              |  |

Where is the first place that we CANNOT subtract? How do you know?

Problem 2: Subtract, decomposing three times.

210,290 - 45,720=?

| Standard Algorithm | Tape Diagram |  |
|--------------------|--------------|--|
|                    |              |  |
|                    |              |  |
|                    |              |  |
|                    |              |  |
|                    |              |  |
|                    |              |  |
|                    |              |  |

| Name: _ |  |  |  |
|---------|--|--|--|
|---------|--|--|--|

Week 4 Day 3 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

## **Input Continued**

**Problem 3**: Use the subtraction algorithm to solve a word problem, modeled with a tape diagram, decomposing units 3 times

Bryce needed to purchase a large order of computer supplies for his company. He was allowed to spend \$859,239 on computers. However, he ended up only spending \$272,650. How much money was left? Use CUBES to solve.



## CFU

**Directions:** Solve using a standard algorithm and draw a tape diagram to match.

Tape Diagrams

a. 2,460 <u>-1,370</u>

d. 2,460

-1,472

| Nam    | e:       |      |                     | Wee | k 4 Day 3 Date: |  |
|--------|----------|------|---------------------|-----|-----------------|--|
| BCCS-B |          | Howa | ard Morehouse Hampt | on  |                 |  |
|        |          | CF   | U Continued         |     |                 |  |
|        |          |      |                     |     | Tape Diagrams   |  |
| g.     | 124,006  |      |                     |     |                 |  |
|        | -121,117 |      |                     |     |                 |  |
|        |          |      |                     |     |                 |  |
|        |          |      |                     |     |                 |  |

#### **Application Problem**

**Directions**: Draw a tape diagram to represent each problem. Use numbers to solve, and write your answer as a statement. Check your answers. Solve using CUBES

There are 86,400 seconds in one day. If Mr. Liegel is at work for 28,800 seconds a day, how many seconds a day is he away from work?



| Name:  | Week 4 Day 3 Date:       |
|--------|--------------------------|
|        |                          |
| BCCS-B | Howard Morehouse Hampton |

#### **Exit Ticket**

**Directions:** Use the standard algorithm to solve the following subtraction problems.

| 1. | 19,350  | 2. | 32,010 - 2,546 |
|----|---------|----|----------------|
|    | - 5,761 |    |                |

**Directions:** Draw a tape diagram to represent the following problem. Use numbers to solve, and write your answer as a statement. Check your answer.

3. A doughnut shop sold 1,232 doughnuts in one day. If they sold 876 doughnuts in the morning, how many doughnuts were sold during the rest of the day?



| Name:  |                       |               | _                 | Week 4 D        | ay 3 Date:    |       |
|--------|-----------------------|---------------|-------------------|-----------------|---------------|-------|
| BCCS-B |                       |               |                   | Howard N        | 1orehouse Har | npton |
|        |                       |               | Homework          |                 |               |       |
| 1. Use | the standard algorith | m to solve th | e following subtr | action problems |               |       |
| a.     | 71.989                | b.            | 371.989           | C.              | 371.089       |       |

| / 1/505 | 5. 572,565      | 0,1,000 |
|---------|-----------------|---------|
| -21,492 | <u>- 96,492</u> | -25,192 |

Directions: Draw a tape diagram to represent each problem. Use numbers to solve, and write your answer as a statement. Check your answers. Use CUBES to solve.

2. Jason ordered 239,021 pounds of flour to be used in his 25 bakeries. The company delivering the flour showed up with 451,202 pounds. How many extra pounds of flour were delivered?



| Name: |  |  |
|-------|--|--|
|-------|--|--|

Week 4 Day 4 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

Do now

Draw a tape diagram to represent the following problem. Use numbers to solve, and write your answer as a statement. Check your answer. Use CUBES to solve

A doughnut shop sold 1,232 doughnuts in one day. If they sold 876 doughnuts in the morning, how many doughnuts were sold during the rest of the day?





Today we are taking a quiz on the following:

- Adding and subtracting large numbers
- Using CUBES to solve word addition and subtraction word problems

We will review and then you will take you quiz using a good form and ed light.

Let's Review!

| Name:         |       | Week 4 Day 4 Date:       |  |  |
|---------------|-------|--------------------------|--|--|
| BCCS-B        |       | Howard Morehouse Hampton |  |  |
|               | Input |                          |  |  |
|               |       | Tape Diagram             |  |  |
| 2,460         |       |                          |  |  |
| <u>-1,470</u> |       |                          |  |  |
|               |       |                          |  |  |
|               |       |                          |  |  |
|               |       |                          |  |  |
| 124,306       |       |                          |  |  |

In May, the New York Public Library had 124,061 books checked out. Of those books, 31,117 were mystery books. How many of the books checked out were not mystery books?

-31,117

| Name:             |                 | Week 4 Day 4 Date:       |  |
|-------------------|-----------------|--------------------------|--|
| BCCS-B            |                 | Howard Morehouse Hampton |  |
|                   | Input Continued | L                        |  |
|                   |                 | Tape Diagram             |  |
| 6,311             |                 |                          |  |
| <u>+ 1, 2 6 8</u> |                 |                          |  |
|                   |                 |                          |  |
|                   |                 |                          |  |
| 8, 3 1 4          |                 |                          |  |
| + 2, 4 9 3        |                 |                          |  |



Next steps:

- Complete the quiz in the packet.
- Submit the answers to the multiple choice in your google classroom using the google form.
- Submit the answer to the open response question on ed light.
- DO NOT separate the quiz from your packet. Leave everything together.



 Name:
 Week 4 Day 4 Date:

BCCS-B

Howard Morehouse Hampton

## Adding/Subtracting QUIZ

**Directions:** For the multiple choice section solve each of the following and choose the correct response. There is only 1 correct answer. SHOW YOUR WORK

- 1. 2,460- 1,472=?
  - a. 1,088
  - b. 988
  - c. 888
  - d. 1,012
- 2. 124,306 31,117=?
  - a. 93,189
  - b. 113,211
  - c. 94,289
  - d. 93,389
- 3. 27,909 + 9,740=?
  - a. 18,169
  - b. 37,649
  - c. 27,649
  - d. 37,749
- 4. 289,205 + 11,845=?
  - a. 301,095
  - b. 277,360
  - c. 302,195
  - d. 301,119

| Name: |  |
|-------|--|
|-------|--|

Week 4 Day 4 Date: \_\_\_\_\_

BCCS-B

Howard Morehouse Hampton

## Adding/Subtracting QUIZ continued

**Directions:** For the open response section solve the following question by using CUBES. SHOW YOUR WORK

Once you have completed this question on paper, you will submit your response on ed light.

5. At the zoo, Brooke learned that one of the rhinos weighs 4,897 pounds, one of the giraffes weighs 2,667 pounds, one of the African elephants weighs 12,456 pounds, and one of the Komodo dragons weighs 123 pounds. What is the combined weight of the zoo's African elephant and the rhino?