

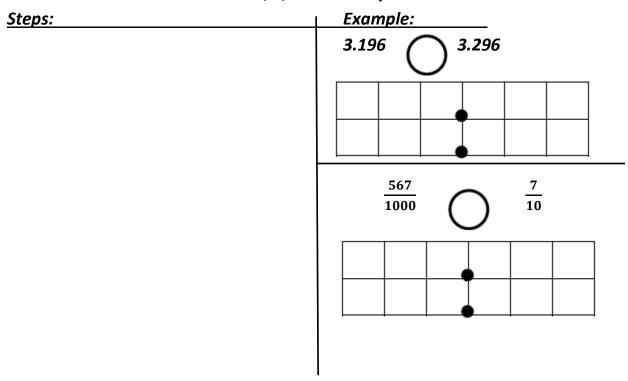
5th Grade Math Remote Learning Packet Week 3

Dear Educator,

My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

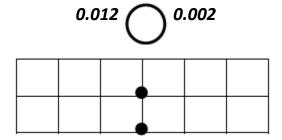
(Parent Signature)	(Date)

Parents please note that all academic are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

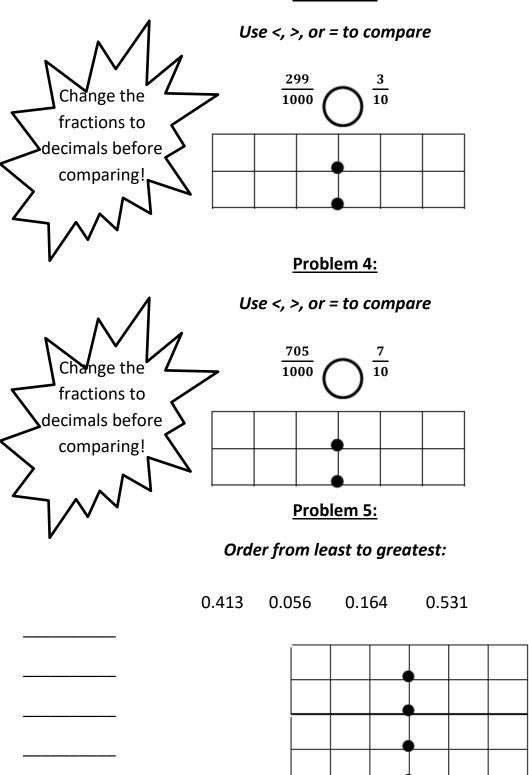

Name:	Week 3 Day 1 Date:
BCCS Boys	MIT Stanford
Do No	<u>ow</u>
Express as decimal numerals.	
a. 27 \frac{456}{1000}	b. $\frac{97}{1000}$
c. two hundred twenty-three thou	usandths
d. six and fifty-nine thousandths_	
Express as word form.	
e. 12.809	
f. 2.931	

Greater Than	Less Than	_ Equal To	
Least to Greatest	Greatest to Lea	st	
Ascending to Descending	Descending to	Ascending	

Input Activity

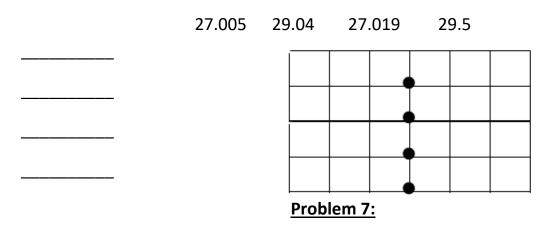

Problem 1:

Use <, >, or = to compare

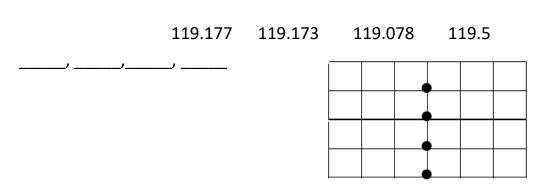


Problem 2:

Use <, >, or = to compare

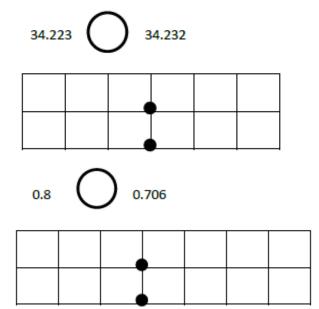


Problem 3:



Problem 6:

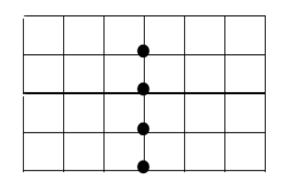
Order from ascending to descending:



Order from descending to ascending:

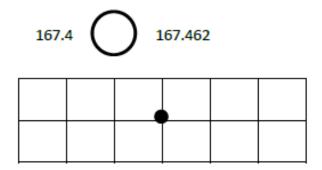
Problem Set

Show the numbers on the place value chart using digits. Use >, <, or = to compare. Explain your thinking in the space to the right.



Application Problem:

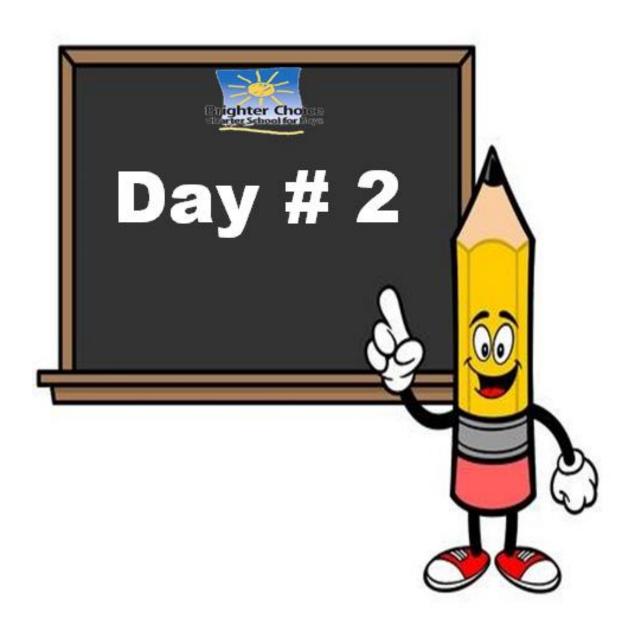
Craig, Randy, Charlie, and Sam ran in a 5K race on Saturday. They were the top 4 finishers. Here are their race times:


Craig: 25.9 minutes Randy: 32.2 minutes Charlie: 32.28 minutes Sam: 25.85 minutes

Who won first place?
Who won second place?
Who won third place?
Who won fourth place?

Show the numbers on the place value chart using digits. Use >, <, or = to compare. Explain your thinking
in the space to the right.

Use >, <, and = to compare the numbers.
 32.725 32.735

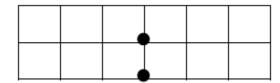


Name:		Week	3 Day 1 Date:	
BCCS Boys		MIT	Stanford	
*)			
5	Home	wor	<u>k</u>	
1. Use >, < or = to compare the	following			
a. 16.45)	16.454	
b. 0.83	\bigcirc		83 100	
C. $\frac{205}{1000}$	0) (0.205	
d. 95.045	0)	95.545	
e. 419.10	0) 4	119.099	
f. Five ones and eight tenths	0) ,	Fifty-eight tenths	
g. Thirty-six and nine thousandths	0) ,	Four tens	
 Adam collected different types of ants to conduct a study on insects and measured the length of the ants. His observations are in the table below. Use the table to answer the following questions. Length of Various Types of Ants 				
Which type of ant is the longest?		Туре	0	Length
Which type of ant is the shortest?			Garden Queen	0.77 cm
		Black g	arden Worker	0.495 cm
Ordering the ant lengths in descending or	der.	Carper	iter Ant	0.774 cm
		Pharac	h Worker Ant	0.298 cm

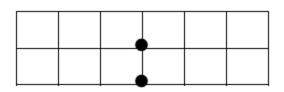
a.

b.

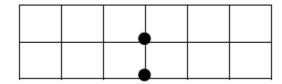
c.

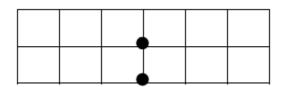

Name: ______Week 3 Day 2 Date: _____

BCCS Boys MIT Stanford

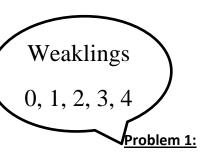

Do Now

Use >, < or = to compare.


12.45 12.21


47.895 451.87

125.203 125.21



108.26 108.1

Key Words:

Rounding		
Estimate		
Maria de Norte de Constante de		
Words that mean to round:		
Strong Arms		
Ex:		
Weakling		
Ex:		
	I	
Steps to Rounding:	Ex:	

Input Activity

Strong Arms 5, 6, 7, 8, 9

Round to the nearest tens place.

Problem 2:

9 ≈ _____

47 ≈_____

Problem 3:

59 ≈ _____

Problem 4:

586 ≈ _____

Round to the nearest hundreds place.

Problem 5:

Problem 6:

73 ≈_____

519 ≈_____

Problem 7:

1,784 ≈_____

Problem 8:

208 ≈_____

Round to the nearest thousands place.

Problem 9:

Problem 10:

2,447 ≈ _____

549 **~**_____

Problem 11:

Problem 12:

8,785 ≈ _____

8,535 ≈ _____

Round to the nearest underlined place.

	Ρ	r	0	b		e	n	n	1	3	
--	---	---	---	---	--	---	---	---	---	---	--

Problem 14:

<u>1</u>,478,123≈_____

Problem 15:

Problem 16:

6<u>6</u>7,891≈_____

Problem Set

Round to the nearest underlined place.

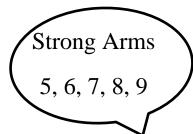
Round the following to the nearest thousands place.

Application Problem

For the county bake sale, the soccer team baked 222 cookies, 298 brownies, and 234 muffins.

Part A: Round each type of baked good to the nearest hundred.
Cookies
Brownies
Muffins
Part B: The soccer team baked about the same amount of two types of baked goods. What types were they? Exit Ticket
Round the following to the nearest tens place.
a. 12,008 ≈ b. 49,612 ≈

Round the following to the nearest hundreds place.


Round the following to the nearest underlined place.

Name: ______ Week 3 Day 2 Date: _____

BCCS Boys

Weaklings

MIT Stanford

Homework

Round the following to the nearest tens place.

Round the following to the nearest hundreds place.

Round the following to the nearest underlined place.

The population of a certain city is 836,527. What is the population of this city rounded to the nearest thousand?

Name: ______Week 3 Day 3 Date: _____

BCCS Boys MIT Stanford

Do Now

Round the following to the nearest tens place.

Round the following to the nearest hundreds place.

Round the following to the nearest underlined place.

Key Words:

Strong Arms		
Ex:		
Weakling		
Weaklings	Input Activity:	Strong Arms
0, 1, 2, 3, 4	Round to the nearest tenths place.	5, 6, 7, 8, 9
Problem 1:	Problem 2:	
4.72 ≈	0.97 ≈	
Problem 3:	<u>Problem 4:</u>	
2.98 ≈	5.02 ≈	
	Round to the nearest hundredths place.	
Problem 5:	Problem 6:	
2.373 ≈	5.809 ≈	
<u>Problem 7:</u>	Problem 8:	

8.874 ≈_____

2.085 ≈_____

Round to the nearest thousandths place.

Problem 9:		Problem 10:
2.4470 ≈		5.7849 ≈
Problem 11:		Problem 12:
1.8512 ≈		.1532 ≈
	Round to the nearest (underlined place.

Problem 13: Problem 14:

Problem 15: Problem 16:

Problem Set

Round to the nearest underlined place.

Round the following to the nearest hundredths place.

Application Problem:

Light from the sun can travel a million miles in 5.368 seconds. How many seconds is that, rounded to the nearest tenth of a second?

Answer: ______ seconds

Round the following to the nearest tenths place.

Round the following to the nearest hundredths place.

Round the following to the nearest underlined place.

Name: ______Week 3 Day 3 Date: _____

BCCS Boys

MIT Stanford

Strong Arms 5, 6, 7, 8, 9

Homework

Round the following to the nearest tenths place.

Round the following to the nearest hundredths place.

Round the following to the nearest underlined place.

Name:	Week 3 Day 4 Date:		
PCCS Pous	MIT Stanford		
BCCS Boys	MIT Stanford		

Do Now

1. Round to the tenths place.	2. Round to the whole number.
12.39	45.76
3. Round to the hundreds place.	4. Round to the millions place.
1,487	3,673,746

Input Activity

Steps to Adding Decimals	Example	
 Change the problem toform. Line up the 	0.56 + 4.97	
 Fill any empty with down the point. 		
5 normally.		
3 tenths + 54 hundredths	2 tenths + 6 tenths	
2 ones 3 thousandths + 6 ones 1 thousandth	2 tenths 5 thousandths + 5 hundredths	

1.8 + 13 tenths	1 hundred 8 hundredths
	+ 2 ones 4 hundredths
7.048 + 5.196	7.44 + 0.31
<u>Probl</u>	em Set:

Solve using the standard algorithm.

a. 0.3 + 0.82 b. 1.03 + 0.08 c. 7.3 + 2.8

Application Problem:

Van Cortlandt Park's walking trail is 1.02 km long. Marine Park's walking trail is 1.28 km long. Central Park's walking trail is 1.78km long. How many km long are the walking trail's in all?

Answer Statement_			
_			

Exit Ticket

Solve using the standard algorithm.

2.40 + 1.8	36.25 + 8.67
4 tenths + 82 hundredths	64 hundredths + 754 thousandths

Name: ______Week 3 Day 4 Date: ______

BCCS Boys MIT Stanford

Adding Decimals Homework

Solve using the standard algorithm.

0.4 + 0.7 =	2.04 + 0.07 =
6.4 + 3.7 =	56.04 + 3.07 =
72.564 + 5.137 =	75.604 + 22.296 =

Name:	Week 3 Day 5 Date:
BCCS Boys	MIT Stanford
	Module 1 Mid-Module SPA Assessment
Directions	: Make sure to show all your work and complete each part. Good luck! ©
	Iltiple Choice - Write all answers on the lines and use the Google Form marked Mid-Module SPA Assessment to answer each multiple choice question.
1.	Carla made \$2,853 this month, while Frank made \$3,285 this month. What is the relationship between the two in \$2,853 and the two in \$3,285? (5.NBT.1)
	A. The two in \$2,853 is 10 times greater than the two in \$3,285
	B. The two in \$2,853 is $\frac{1}{10}$ times greater than the two in \$3,285
	C. The two in \$2,853 is 100 times greater than the two in \$3,285
	D. The two in \$2,853 is 1,000 times greater than the two in \$3,285
<u> </u>	Peggy served 5.25 gallons of orange juice this morning. If Peggy divided equal amounts of orange juice to each person and 10 ² represents the number of people she served orange juice to, how much orange juice did each person get? (5.NBT.2)
	A. .0525 gallon
	B. .525 gallon
	C. 52.5 gallons
	D. 525 gallons
3.	Which statement is true? (5.NBT.3b)
	A. 0.209 > 0.29
	B 0.460 < 0.401

C. 0.670 = 0.607

D. 0.302 < 0.37

4. Which expression has a value that is *less* than 37.624? (5.NBT.3a)

A.
$$(3 \times 10) + (2 \times 1) + (6 \times \frac{1}{10}) + (9 \times \frac{1}{100}) + (3 \times \frac{1}{1,000})$$

B.
$$(3 \times 10) + (2 \times 1) + (6 \times \frac{1}{10}) + (2 \times \frac{1}{100}) + (5 \times \frac{1}{1,000})$$

C.
$$(3 \times 10) + (2 \times 1) + (6 \times \frac{1}{10}) + (2 \times \frac{1}{100}) + (3 \times \frac{1}{1000})$$

D.
$$(3 \times 10) + (2 \times 1) + (6 \times \frac{1}{10}) + (2 \times \frac{1}{100}) + (4 \times \frac{1}{1,000})$$

5. Which decimal makes this number sentence true? (5.NBT.3b)

- **A.** 0.589
- **B.** 0.59
- **C.** 0.6
- **D.** 0.5
- _____6. Which expression is equivalent to 62,340? (5.NBT.2)

A.
$$(6 \times 10^5) + (2 \times 10^4) + (3 \times 10^3) + (4 \times 10^2)$$

B.
$$(6 \times 10^5) + (2 \times 10^4) + (3 \times 10^3) + (8 \times 10^1)$$

C.
$$(6 \times 10^4) + (2 \times 10^3) + (3 \times 10^2) + (4 \times 10^1)$$

D.
$$(6 \times 10^3) + (2 \times 10^2) + (3 \times 10^2) + (4 \times 10^1)$$

- _____ 7. What is 482.073 expressed in word form? (5.NBT.3)
 - A. four eight two and seventy-three thousandths
 - B. four hundred eighty-two thousand seventy-three
 - C. four hundred eighty-two and seventy-three hundredths
 - **D.** four hundred eighty-two and seventy-three thousandths

8.	Which decimal is equivalent to $\frac{41}{100}$? (5.NBT.3)
	A. 41.0
	B. 4.10
	C. 0.41
	D. 0.041
9.	Light from the Sun can travel a million miles in 5.368 seconds. How many seconds is that, rounded to the nearest tenth of a second? $(5.NBT.4)$
	A. 5.36 seconds
	B. 5.4 seconds
	C. 5.3 seconds
	D. 5.37 seconds
10	. The operation symbol and the exponent are missing in the equation shown below
	(5.NBT.2)
	132.4 10 = 1.324

Which operation symbol and exponent should go in the boxes to make the equation true?

- **A.** \times and 2
- **B.** \div and 2
- **C.** \div and 3
- **D.** \times and 3

	of the digit 4 in 137? (5.NBT.1)	2 <u>4</u> ,601 is how	v many time	s greater than	the value of the
A. 1,0	000				
B. 10					
C. 10					
D. 1					
eurn it in.	<u>ver</u> - Please sho he numbers be				
greatest t	o least. (5.NBT.3b) 42.097	43.996	43.001	41.405	
The number placed? (5.NB	41.674 is added	d to the list. B	etween whi	ch two numbes	should it be
Answer		and			

13. The average annual rainfall totals for cities in New York are listed below.

Cities	Rainfall Totals
Rochester	0.97 meters
Ithaca	0.947 meters
Saratoga Springs	1.5 meters
New York City	1.268 meters

Put the rainfall measurements in orde	r from least to greatest. (5.NBT.3b)
14. Use the chart above to write Ithe form on the lines below. (5.NBT.3a)	aca's rainfall total in expanded form and word
Expanded Form:	
Word Form:	
15.Round the following rainfall tota	ls to the nearest tenth. (5.NBT.4)
ochester 0.97 ≈	Ithaca 0.947 ≈

16.New York City's rainfall is the same every year. each year, how much rain would fall in 100 year.	
С	
U	
В	
E	
S	
Answer Statement	

1	lame	

5th Grade Math Remote Learning Packet Week 4

Dear Educator,

My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

(Parent Signature)	(Date)

Parents please note that all academic are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

Name:	Week 4 Day 1 Date:	
BCCS Bovs	MIT Stanford	

Do Now

3 tenths + 2 tenths =	0.029 + 4.563 =
41 hundredths + 6 tenths =	56.87 + 3.459 =

Input Activity

Steps to Subtracting Decimals	Example
	45.78 - 4.65
1. Change the problem toform.	
2. Line up the	
3. Fill any emptywith	
4down the point.	
5 normally.	
5 tenths - 3 tenths	7 ones 5 hundredths
	– 2 ones 3 tenths
83 tenths – 6.4	9.2 – 6 ones 4 tenths
	20
	70

\sim	004	_	.292
11	$\mathbf{x} \mathbf{z}$	_ (, Ju
v.	.ഗാച	- u	

4.083 - 1.29

6 - 0.48

5 tenths – 2 tenths

Problem Set:

Find the difference using the standard algorithm. Show your work!

a. 1.4 – 0.7	b. 91.49 – 0.7	c. 191.49 – 10.72

Application Problem:

At the 2012 London Olympics, Michael Phelps won the gold medal in the men's 100-meter butterfly. He swam the first lap in 26.96 seconds. The second lap took him 25.39 seconds. How much faster was his second lap than his first?

Answer Statement:			

Exit Ticket

Find the difference using the standard algorithm.

1.7 – 0.8	84.637 — 28.56
7 — 0.35	5.622 – 32 hundredths

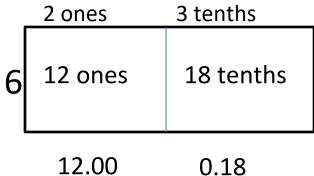
Name:	Week 4 Day 1 Date:	
BCCS Boys	MIT Stanford	

Subtracting Decimals Homework

Find the difference using the standard algorithm.

1.8 – 0.9 =	41.84 – 5.7 =
341.84 – 21.92 =	5.182 – 0.06 =
50.416 – 4.25 =	741 – 3.91 =

Name:			Week 4 Day 2 Date:		
BCCS Boys	S		М	IT Stanfo	rd
			<u>Do Now</u>		
	Arrange the numbers below so that they are listed in numerical order				
from gre	eatest to lea	ist.			
	56.788	48.754	56.237	48.874	47.659


Input Activity

Steps to Multiplying Decimals by Whole Numbers

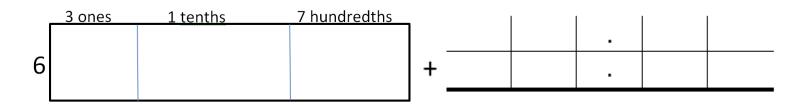
Example

- 1. Set up the problem using the Area Model.
- 2. <u>Multiply</u> the whole number by each each number above the box. Write your <u>product</u> in the <u>box</u>.
- 3. Write the <u>product</u> to each box below the box as a <u>decimal</u>.
- 4. Add your products using adding decimal rules to get a final answer.

6 x 2.32 ones 3

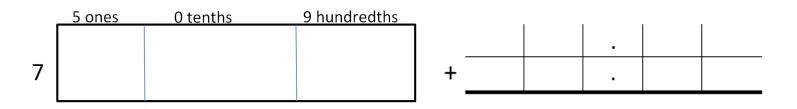
	1	2		0	0
+	0	0	•	1	8

Problem 1


2 x 5.41

nes	4 tenths	1 hundredths
	ones	ones 4 tenths

+			


Problem 2

6 x 3.17

Problem 3:

7 x 5.09

Problem 4:

4 x .145

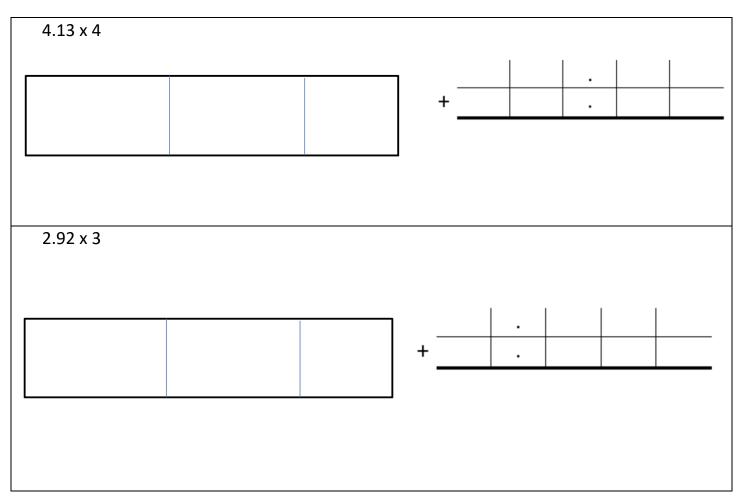
	1 tenths	4 hundredths	5 thousandths		I	I	ı	I
4				+				
				٠,	•			

Problem Set:

Find the product using the area model.

Show your work!

4.25 x 3			
	+		
.734 x 2			
	+		
	_		


Application Problem:

Carlos had a garage sale and sold 5 of his old PS2 video games. Each game sold for \$5.75. How much money did Carlos make?

Exit Ticket

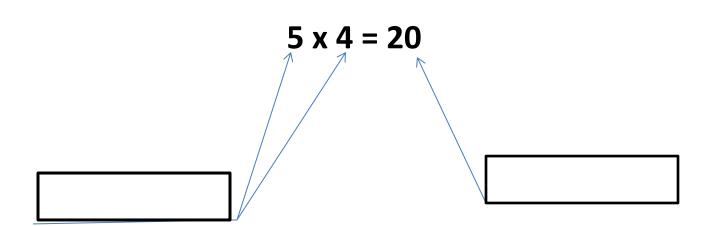
Find the product using the area model.

Name:	Week 4 Day 2 Date:		
	_		
BCCS Boys	MIT	Stanford	

Area Model Multiplying Decimals by Whole Numbers <u>Homework</u>

Find the product using the standard algorithm.

1.89	x 4 =		
			•
		J	
3 20	6 x 7 =		
3.2			


Name: ______Week 4 Day 3 Date: _____ **BCCS Boys** MIT Stanford **Do Now** 6 x 7.9= _____ 3.65 x 5 = _____

Review Key Terms:

factor – the	being	
product – the	to a	

A _____ = a ____

Example

Input Activity

Steps to Multiplying Decimals by	Example
Whole Numbers	
1 the problem and (decimal on top of whole number).	0.26 x 8
 like there isn't a decimal, Starting at the ones place and moving the hundreds the decimal for now. 	
3. Look at the original decimal number out the decimal places after each original decimal. Scoop in that many spaces to the of your final answer and place your decimal.	4 x 3.1
0.45 x 7	6 x 5.1
11. 4 x 5	3 x 7.8

3.12 x 4	5 x 4.22			
3 x 3.41	0.733 x 4			
Problem Set:				

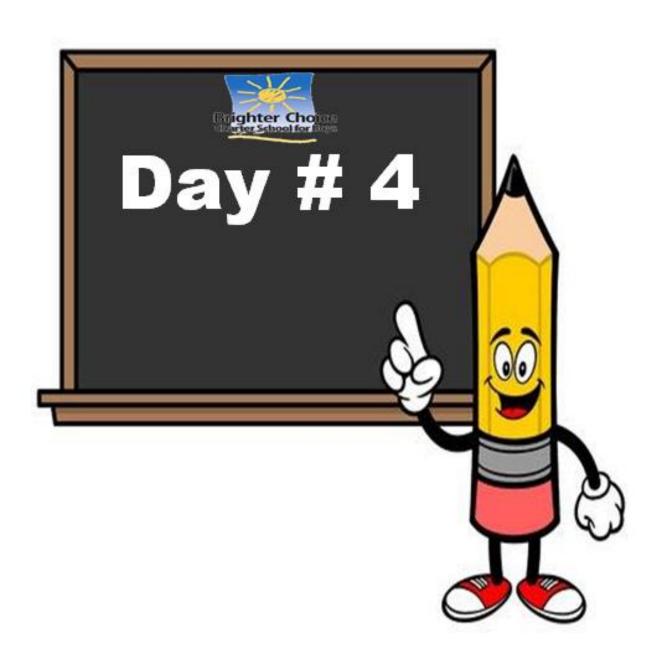
Problem Set.

Find the product using standard algorithm.

Show your work!

C	d. 1.4 x 5	e. 3 x 9.73	f. 21.6 x 2

Application Problem:


Patty buys 7 juice boxes a month for lunch. If one juice box costs \$2.79, how much money does Patty spend on juice each month?

Answer Statement:			
-------------------	--	--	--

Exit Ticket

Find the product using the standard algorithm.

8 x 6.22	9 x 54.8

Name:	Week 4 Day 4 Date:		
	_		
BCCS Bovs	MIT	Stanford	

Multiplying Decimals by Whole Numbers Homework

Find the product using the standard algorithm.

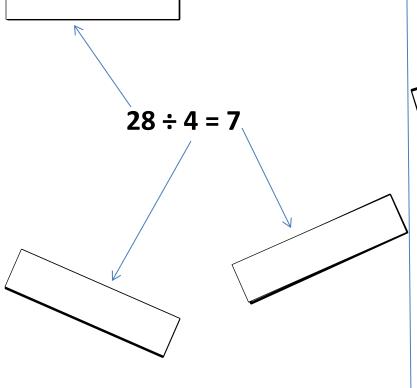
a. 5.1 x 2	b. 4 x 8.93	c. 7.13 x 6
d. 4.27 x 6	e. 62.3 x 7	f. 9 x 4.82

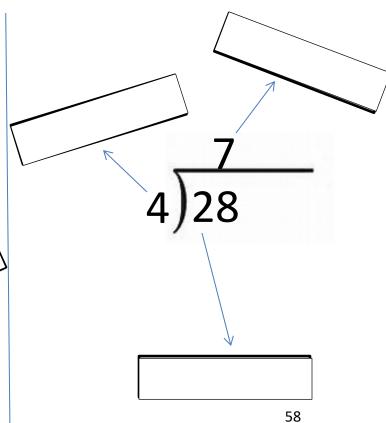
Name: ______Week 4 Day 4 Date: _____

BCCS Boys

MIT Stanford

Do Now


Division Key Terms:


<u>dividend</u> – the _____ being ____ into (the big number)

<u>divisor</u> – the ______into the _____ (the small number)

quotient – the _____ to a ____ problem

A ______ = a _____

Acronym

Meaning

Does

D_____

McDonald's

M_____

Serve

S_____

Cheese

C_____

Burgers?

B_____

Concept Development

Steps to Dividing by Whole Numbers

Example

1. Set up the garage.

)

- 2. Put the dividend (big number) in the garage and the divisor (small number) outside of the garage. Draw lines above the garage for the amount of numbers in the dividend (that's how many numbers are in your quotient)
- 3. List the first nine math facts for the divisor off to the side.
- 4. Divide using DMSCB. Check each step as you complete it.
- 5. Check your work.

D

M

S

2) 56

C

В

D

M

S

C

В

D

M

S

C

В

S

C

В

C

В

Problem Set:

Find the product using the area model.

Show your work!

112 ÷ 3	D M S C B	3) 112
415 ÷ 5		
	D	
	M	5) 415
	S	
	С	
	В	

Application Problem:

Larenzo likes to take pictures on his phone. He took 428 photos. He took the same amount of photos for 4 days. How many photos did he take each day?

Exit Ticket

Find the quotient using DMSCB. Show all work.

256 ÷ 2	D	
	М	2) 256
	S	
	С	
	В	
540 ÷ 5	D	
	M	E \ E 4 O
	S	5) 540
	С	
	В	

Name:	Week 4 Day 4 Date:		
	<u> </u>		
BCCS Boys	MIT Stanford		

Homework

Find the quotient using DMSCB. Show all work.

934 ÷ 6		
	D	
	M	6) 934
	S	
	С	
	В	
863 ÷ 2		
	D	
	M	2) 863
	S	
	С	
	В	