Name
Brighter Choice Charter School for Boys
\qquad

$4^{\text {th }}$ Grade Math Remote Learning Packet

Week 11

Dear Educator,
My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

Connect while at Home!

Subscribe to my YouTube Channel to catch up with previously taught lessons or refer back to Math concepts if you are to need additional assistance.

Look up by the name of the channel	\longrightarrow	Melissa Lewis

or

- Please do not separate either packet.
- Please do not remove any pages from either packet.

Name: \qquad
BCCS-B

Week 11 Day 1 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I use formulas to solve various problems that involve area and perimeter?

Objective: I can use the formulas I have been taught to solve problems that involve area and perimeter.

Do Now

Using the digits $1,2,3,4$ and 5 only once, create a 5 digit number. Write that number in standard, expanded and word form.

Standard form: \qquad
Expanded form: \qquad
Word form: \qquad
Input
Today we are going to review solving problems that involve \qquad and \qquad . Let's first go over the formulas and definitions of both.

Area

https://www.youtube.com/watch?v=CgqgY7a630Q
Area is \qquad
To find the area we multiply \qquad

Area $=\mathrm{L} \times \mathrm{W}$
Area $=\ldots$
Area $=\ldots$

Name: \qquad

BCCS-B

Input

Area $=\mathrm{L} \times \mathrm{W}$

Area= \qquad x \qquad

Area= \qquad

Howard Morehouse Hampton
Week 11 Day 1 Date: \qquad

Perimeter

https://www.youtube.com/watch?v=dlHyZ1Hme1s

Perimeter is \qquad

To find the perimeter we add \qquad

Perimeter $=s+s+s+s$
Perimeter= \qquad $+$ \qquad $+$ \qquad $+$
Perimeter= \qquad

A rectangular living room has a width of 23 ft and a length of 32 ft . What is the perimeter of the living room?

Perimeter $=s+s+s+s$

Perimeter= \qquad $+$ \qquad $+$ \qquad $+$
\qquad
Perimeter= \qquad

Name:
BCCS-B

Week 11 Day 1 Date: \qquad
Howard Morehouse Hampton

Your Turn

Find the area of the shapes below using the formula that you have learned.

Area= \qquad
Find the perimeter of the shapes below using the formula that you have learned.
76 in.
11in \square

Perimeter=

\qquad

32 cm .

Name: \qquad
BCCS-B

Week 11 Day 1 Date: \qquad
Howard Morehouse Hampton

Input

Sometimes a rectangle can have the same area but different side lengths.
For example, let's say the rectangle below has an area of 24 sq. units. What are a set of possible side lengths? Take a minute to think.

Length	Width

One rectangle can have several different combinations of sides.

Your Turn

If a rectangle has an area of 18 sq. units, what are the possible side lengths of this shape?

Input

How do I find the missing side of a shape when I know the area or perimeter?
When we know the area of a shape we can use what we know about
\qquad to help us find a missing side.

Name:
BCCS-B

Week 11 Day 1 Date: \qquad
Howard Morehouse Hampton

For example:
Sketch a rectangle with an area of 12 and a width of 3 .

We can think: \qquad $x 3=12$ or 12 divided by $3=$?

Both of these thoughts will help find a missing side when we know the area.
The missing side is \qquad
Try this one:

$x=$ \qquad

Your Turn:

7 cm
 $x \mathrm{~cm}$
$x=$ \qquad

Name: \qquad
BCCS-B

Week 11 Day 1 Date: \qquad
Howard Morehouse Hampton

When we know the perimeter and a one side, finding the missing side takes a little more work.

- Double the side we know
- Subtract is from the perimeter
- Divide what's left by 2

The perimeter of the rectangle below is 26 units. It has a width of 5 units and a missing length. What is it the missing length?

- Double the width: $5+5(5 \times 2)=10$
- Subtract $26-10=16$
- Divide by 2 (what's half?) half of 16 is 8
- The length is 8 units.

Try these:

a. $P=120 \mathrm{~cm}$
20 cm

$x=$ \qquad
b. $P=1,000 \mathrm{~m}$

Name: \qquad
BCCS-B

Week 11 Day 1 Date: \qquad
Howard Morehouse Hampton

Application Problem

A blanket is 4 feet wide. It is 3 times as long as it is wide.
a. Draw a diagram of the blanket, and label its dimensions.
b. Find the perimeter and area of the blanket.

Area= \qquad
\qquad

Exit Ticket-google form

Name: \qquad
BCCS-B

Week 11 Day 2 Date: \qquad Howard Morehouse Hampton

LEQ: How can I use patterns and zero rule to help multiply multiples of 10, 100 and 1,000.

Objective: I can multiply by multiples of 10,100 and 1000.

Do Now

A poster is 3 inches long. It is 4 times as wide as it is long.
a. Draw a diagram of the poster, and label its dimensions.
b. Find the perimeter and area of the poster.
\qquad area= \qquad

Input

Drop the Eggs (the Zero Rule)
 https://www.youtube.com/watch?v=zXPdU-FWrkY

- How many zeroes are in the problem?-drop the zeros
- Multiply what's left.
- Bring back the same amount of zeros that you dropped.

Name: \qquad
BCCS-B

Week 11 Day 2 Date: \qquad
Howard Morehouse Hampton

Input

Find the product.

a. 20×7	b. 3×60	c. 3×400	d. 2×800

Try These:

e. 7×30	f. 60×6	g. 400×4	h. $4 \times 8,000$
i. 5×30	j. 5×60	$\mathrm{k} .5 \times 400$	I. $8,000 \times 5$

Sometimes there are zeros in \qquad the numbers we are . We can solve these types of problems the same way!

For example:
$20 \times 40=$?
This equation has 2 zeros. We can \qquad both of the zeros and multiply
2×4.
$2 \times 4=$ \qquad
Now, bring back the 2 zeros we took away. $20 \times 40=$ \qquad

Name: \qquad
BCCS-B
Try These!

20×20	60×20	70×20	70×30

Application Problem

Jordan has twenty times as many baseball cards as his brother. His brother has 9 cards. How many cards does Jordan have?

Name:
BCCS-B

Week 11 Day 2 Date:
Howard Morehouse Hampton

Exit Ticket-ed light

One ticket to the symphony costs $\$ 50$. How much money is collected if 80 tickets are sold?

Name: \qquad
BCCS-B

Week 11 Day 3 Date: \qquad
Howard Morehouse Hampton

LEQ: How does partial products relate to a standard algorithm?
Objective: I can use partial products to support a standard algorithm when multiplying multi-digit numbers.

Do Now

Every night, Eloise reads 40 pages. How many total pages does she read at night during the 30 days of November?

We have learned how to multiply multi-digit numbers using partial products, area models and a standard algorithm.

Partial Products: Taking a number and \qquad into \qquad to make multiplying easier.

Name: \qquad
BCCS-B
Input

Partial Products Multiplication

1. Multiply the ones
2. Multiply the tens
3. Multiply the hundreds
4. Multiply the thousands
5. Add partial products together
425×4

Partial Products	Standard Algorithm

Your Turn: 534×7

Partial Products	Standard Algorithm

Name:
BCCS-B
Input
$4,458 \times 3$

Partial Products	Standard Algorithm

Your Turn
$3,455 \times 4$

Partial Products	Standard Algorithm

Application Problem

A cafeteria makes 4,408 lunches each day. How many lunches are made Monday through Friday?

Name:
BCCS-B

Week 11 Day 3 Date:
Howard Morehouse Hampton

Exit Ticket-ed light

Model with a tape diagram and solve.
4 times as much as 467

Today you are taking your mid-module assessment. First, you will take the multiple choice using the google form posted in your math classroom. Then, you will answer the open response questions and use ed light to submit the answers. Use the space below to for each open response question.

Number 11

Number 12

Name: \qquad
BCCS-B
LEQ: How can I use CUBES to solve word problems that include multiplicative word problems?

Objective: I can use CUBES and what I have learned about multiplying large numbers to solve real word problems.

Do Now

A
Mental Multiplication
苼
1.

23.	$21 \times 3=$	
24.	$121 \times 3=$	
25.	$42 \times 2=$	
26.	$142 \times 2=$	
27.	$242 \times 2=$	
28.	$342 \times 2=$	
29.	$442 \times 2=$	
30.	$3 \times 3=$	
31.	$13 \times 3=$	
32.	$213 \times 3=$	
33.	$1,213 \times 3=$	
34.	$2,113 \times 3=$	
35.	$2,131 \times 3=$	

Name: \qquad BCCS-B

B

MentalMultiplication		
䒜	$1 \times 6=$	
2.	$10 \times 6=$	
3.	$11 \times 6=$	
4.	$1 \times 2=$	
5.	$30 \times 2=$	
6.	$31 \times 2=$	
7.	$3 \times 3=$	
8.	$20 \times 3=$	
9.	$23 \times 3=$	
10.	$20 \times 5=$	
11.	$25 \times 5=$	
12.	$2 \times 4=$	
13.		

Week 11 Day 5 Date: \qquad
Howard Morehouse Hampton

Number Correct: \qquad
Improvement: \qquad

23.	$21 \times 4=$	
24.	$121 \times 4=$	
25.	$24 \times 2=$	
26.	$124 \times 2=$	
27.	$224 \times 2=$	
28.	$324 \times 2=$	
29.	$424 \times 2=$	
30.	$3 \times 2=$	
31.	$13 \times 2=$	
32.	$213 \times 2=$	
33.	1,213 $\times 2=$	
34.	2,113 $\times 2=$	
35.	2,131 $\times 2=$	

Name:
BCCS-B

Week 11 Day 5 Date:
Howard Morehouse Hampton

Input

Over the summer, Kate earned $\$ 180$ each week for 7 weeks. Of that money, she spent $\$ 375$ on a new computer and $\$ 137$ on new clothes. How much money did she have left? Use CUBES to solve.

C
U
B
E
S

Your Turn

Michael earns $\$ 9$ per hour. He works 28 hours each week. How much does he earn in 6 weeks?

C
U
B
E
S

Name:
BCCS-B

Week 11 Day 5 Date: \qquad
Howard Morehouse Hampton
Input

A pair of jeans costs $\$ 89$. A jean jacket costs twice as much. What is the total cost of a jean jacket and 4 pairs of jeans?

Application Problem

Sylvia weighed 8 pounds when she was born. By her first birthday, her weight had tripled. By her second birthday, she had gained 12 more pounds. At that time, Sylvia's father weighed 5 times as much as she did. What was Sylvia and her dad's combined weight?

Name
Brighter Choice
\qquad

$4^{\text {th }}$ Grade Math Remote Learning Packet

Week 12

Connect while at Home!

Subscribe to my YouTube Channel to catch up with previously taught lessons or refer back to Math concepts if you are to need additional assistance.

Look up by the name of the channel	\longrightarrow	Melissa Lewis

or

- Please do not separate either packet.
- Please do not remove any pages from either packet.

Name: \qquad
BCCS-B

Week 12 Day 1 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I use a place value chart model the multiplication of a multiple of 10 and a 2 digit number?

Objective: I can multiply a multiple of 10 by a 2 digit number with and without a place value chart. I can use what I have learned about area models and apply it to solving a 2 digit by 2 digit multiplication problem.

Do Now

Sam read his book 30 minutes a day after school every day for the whole month of November. If there are 30 days in November, how many total minutes did he read his book for I that month?

Input

Problem 40×22 in a place value chart
We can think about this problem as 4×22 to make the multiplication easier and read it as 4 groups of 22 . In the chart below model 4 groups of 22.

Hundreds	Tens	Ones

Name:
BCCS-B
\qquad

Week 12 Day 1 Date: \qquad
Howard Morehouse Hampton Input

Problem 2

50×31

In the chart model 5×31

Hundreds	Tens	Ones

Your Turn
30×24

Hundreds	Tens	Ones

Name:
BCCS-B
40×43

thousands	Hundreds	Tens	Ones

Application Problem
Mr. Goggins planted 10 rows of beans, 10 rows of squash, 10 rows of tomatoes, and 10 rows of cucumbers in his garden. He put 22 plants in each row. Draw an area model, label each part, and then write an expression that represents the total number of plants in the garden?

Name:
BCCS-B

Week 12 Day 1 Date: \qquad
Howard Morehouse Hampton

Exit Ticket - google form
20×41

Hundreds	Tens	Ones

63×30

Thousands	Hundreds	Tens	Ones

Name: \qquad
BCCS-B
LEQ: How can I relate an area model to a standard 2 digit by 2 digit algorithm? Objective: I can use what I have learned about area models and apply it to solving a 2 digit by 2 digit multiplication problem. I can use what I have learned about area models and apply it to solving a 2 digit by 2 digit multiplication problem.

Do Now

43×30

Thousands	Hundreds	Tens	Ones

Input
https://www.youtube.com/watch?v=WYJsQo7ZTC4
30×25 using an area model

1. Draw a rectangle
2. Place the multiple of ten on the side
3. Break apart the $2^{\text {nd }}$ number across the top into tens and ones
4. Multiply to get partial products
5. Add the partial products together

Name:
BCCS-B
60×34 using an area model

You try!
Draw an area model to solve:
70×34
40×27

Name:
BCCS-B

Week 12 Day 2 Date: \qquad
Howard Morehouse Hampton

Application Problem

Ms. Lewis bout 50 boxes on new pencils and each box contained 22 pencils. How many total pencils did she buy in all? Use CUBES to solve.

Exit Ticket-ed light

20×22 \square

Name: \qquad
BCCS-B

Week 12 Day 3 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I relate an area model to a standard 2 digit by 2 digit algorithm?
Objective: I can use what I have learned about area models and apply it to solving a 2 digit by 2 digit multiplication problem. I can use what I have learned about area models and apply it to solving a 2 digit by 2 digit multiplication problem.

Do Now

Draw an area model to solve 80×15

Today we are going to continue our practice of solving 2 digit multiplication problems but today we will relate it to using a standard algorithm model as well. Let's review what an area model is and how we use it by watching a quick video.
https://www.youtube.com/watch?v=WYJsQo7ZTC4

Name:
BCCS-B
Problem 1:
20×22

You Try!
50×41
Prober

Week 12 Day 3 Date: \qquad
Howard Morehouse Hampton
Howard Morehouse Hampton

Name:
BCCS-B
Problem 2:
60×73

You Try!
80×32
60×73

Week 12 Day 3 Date: \qquad Howard Morehouse Hampton Howard Morehouse Hampton

Stack you problem like the one above.

This time draw your own area model and stack your problem like we have been. 80×32

Name:
BCCS-B

Week 12 Day 3 Date: \qquad
Howard Morehouse Hampton

Application Problem

To prepare for a marathon, Sam ran 23 minutes a day for 60 days in a row. How many total minutes did Sam run? Use CUBES to solve.

Exit Ticket-google form
30×93

$50 \times 34=$ \qquad

Name: \qquad
BCCS-B

Week 12 Day 4 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I relate an area model to a standard 2 digit by 2 digit algorithm?
Objective: I can use what I have learned about area models and apply it to solving a 2 digit by 2 digit multiplication problem.

Do Now

Solve.
40×76

Input

Today we are going to be using what we know about area models and multiplication to solve 2 digit by 2 digit problems. The video that we are about to view shows us how to set up our problems when we do not have any zeros.
https://www.youtube.com/watch?v=MVZRD4Fa1OY

Name:
BCCS-B

Week 12 Day 4 Date:
Howard Morehouse Hampton
Input

Problem 1: 34×35
Step 1: draw an area model
Step 2: break apart the first number down the side of the area model by tens and ones

Step 3: break apart the $2^{\text {nd }}$ number across the top of the area model also by tens and ones

Step 4: multiply to get 4 partial products
Step 5: add all partial products together.

Name:
BCCS-B Input
23×31
Week 12 Day 4 Date:
Howard Morehouse Hampton

Your Turn
26×34

Try this one, and draw your own area model: 45×24

Name:
BCCS-B

Week 12 Day 4 Date: \qquad
Howard Morehouse Hampton

Application Problem

Henry was taking a cross country bike ride. He rode for a total of 84 days. Each of those he rode his bike for 65 miles. How many total miles did he ride in those 84 days?
\square

Exit Ticket-ed light

Draw an area model first to support your work, or draw the area model last to check your work.

1. 26×43

Name:
BCCS-B
Today we are taking a quiz on what we have practiced this week. Let's watch a quick video and do some practice questions before we get started!
https://www.youtube.com/watch?v=n3q3XzzIGSY
45×30

34×72

Frank needs to cut 36 pieces of ribbon for the gifts that he is wrapping. If each piece of ribbon he cuts is 45 inches, how many total inches of ribbon does he cut?

