\qquad

Howard University

4th Grade Math

Remote Learning Packet
November 30-December 4, 2020

Name: \qquad
BCCSG \qquad
November 30, 2020
Howard

Module 3, Lesson 9

Learning Target: I can multiply three- and four-digit numbers by one-digit numbers applying the standard algorithm.

Input

1. Represent and solve 6×162 in the place value chart. Relate the process to solving using the standard algorithm.

$$
\begin{array}{|l|l|l|}
\hline & & \\
\hline & & \\
& & \\
\hline
\end{array}
$$

162

$\times 6$
2. Solve 5×237 using the partial product algorithm. Then solve using the standard algorithm and relate the two methods to each other.

Partial Products

237 $\times 5$

Standard Algorithm

237

$\times 5$
3. Solve 6×716 using the partial product algorithm. Then solve using the standard algorithm and relate the two methods to each other.

Partial Products

716
 x 6

Standard Algorithm

716
$\times 6$

Multiply three- and four-digit numbers by one-digit numbers applying the standard algorithm.
4. Shane measured 457 mL of water in a beaker. Olga measured $\mathbf{3}$ times as much water. How much water did they measure all together?

CFU:

Solve using each method. Submit your response in the chat box.

Partial Products	Standard Algorithm
224	224
$\times 3$	$\frac{13}{}$

Name: \qquad
BCCSG

December 1, 2020
Howard

Module 3, Lesson 10

Learning Target: I can multiply three- and four-digit numbers by one-digit numbers applying the standard algorithm.

Input

1. Solve $5 \times 2,374$ using partial products, then connect to the algorithm.

Partial Products	Standard Algorithm
2,374	2,374
$\frac{x 5}{2}$	

How does your answer with partial products compare to your answer with the algorithm?
2. Solve $9 \times 3,082$ using partial products, then connect to the algorithm.

Partial Products	Standard Algorithm
3,082	3,082
$\mathbf{x ~ 9}$	$\frac{x 9}{}$

How does your answer with partial products compare to your answer with the algorithm?
3. Solve $6 \times 3,817$ using the algorithm.

Standard Algorithm
3,817
$\underline{x} 6$

4. Solve $3 \times 7,109$ using the algorithm.

Standard Algorithm
7,109
$\underline{x} 3$

5. Solve a word problem that requires four-digit by one-digit multiplication using the algorithm.

There are 5,280 feet in a mile. If Bryan ran 4 miles, how many feet did he run?

Standard Algorithm
5,280
$\underline{x \quad 4}$

CFU. Submit your answer in the chat box.

1. Solve using the standard algorithm: $\mathbf{3 \times 3 , 1 0 6}$

Name: \qquad
BCCSG

December 2, 2020
Howard

Module 3, Lesson 11

Learning Target: I can connect the area model and the partial products method to the standard algorithm.

Input
Multiply a three-digit number by a one-digit number using the area model.

1. Watch as I label my rectangle, then label your rectangle with a length of 8 and a width of 34 .
\square

Write an equation to find the area of each rectangle.
$A=$ \qquad X \qquad
$A=$ \qquad
$A=$ \qquad x \qquad
$A=$ \qquad
The area of the combined rectangles is \qquad .
2. Now label your area model with a length of 8 and a width of 234 .

$(8 \mathrm{x}$ _ \quad) $+(8 \mathrm{x}$ ___ $)+(8 \mathrm{x}$

Multiply a three-digit number by a one-digit number, connecting the area model to the standard algorithm.
3. 316×4

How many hundreds, tens, and ones are in 316? \qquad hundreds, \qquad tens, and
\qquad ones.

316

X 4
4. Draw an area model to solve $5,463 \times 5$. Compare your answer to the algorithm or the partial products method.

Solve a word problem using the standard algorithm, area model, or partial products strategy.
5. A cafeteria makes 4,408 lunches each day. How many lunches are made Monday through Friday?

CFU (Submit your answer in the chat box.)

1. Solve the following expressions using the standard algorithm, the partial products method, and the area model.
a) 534×7
b) 209×8
\qquad

Module 3, Lesson 12

Learning Target: I can solve two-step word problems, including multiplicative comparison.

Input

1. The table shows the cost of party favors. Each party guest receives a bag with 1 balloon, 1 lollipop, and 1 bracelet. What is the total cost for 9 guests?

Item	Cost
1 balloon	26 cents
1 lollipop	14 cents
1 bracelet	33 cents

2. The Turner family uses $\mathbf{5 4 8}$ liters of water per day. The Hill family uses $\mathbf{3}$ times as much water per day. How much water does the Hill family use per week?
3. Write an equation that would allow someone to find the value of R.

1167	1167	1167

\square

CFU (Submit in the chat box):

1. Jayden has $\mathbf{3 4 7}$ marbles. Elvis has 4 times as many as Jayden. Presley has 799 fewer than Elvis. How many marbles does Presley have?
\qquad

Module 3, Lesson 13

Learning Target: I can use multiplication, addition, or subtraction to solve multi-step word problems.

Input

1. Over the summer, Kate earned $\$ 180$ each week for $\mathbf{7}$ weeks. Of that money, she spent $\$ 375$ on a new computer and $\$ 137$ on new clothes. How much money did she have left?
2. Sylvia weighed 8 pounds when she was born. By her first birthday, her weight had tripled. By her second birthday, she had gained 12 more pounds. At that time, Sylvia's father weighed 5 times as much as she did. What was Sylvia and her dad's combined weight?
3. In one month, Charlie read 814 pages. In the same month, his mom read 4 times as many pages as Charlie, and that was 143 pages more than Charlie's dad read. What was the total number of pages read by Charlie and his parents?

CFU (Submit in the chat box):

1. Three boxes weighing 128 pounds each and one box weighing 254 pounds were loaded onto the back of an empty truck. A crate of apples was then loaded onto the same truck. If the total weight loaded onto the truck was 2,000 pounds, how much did the crate of apples weigh?
