Name
Brighter Choice Charter School for Boys
\qquad

$4^{\text {th }}$ Grade Math Remote Learning Packet

Week 16

Subscribe to my YouTube Channel to catch up with previously taught lessons or refer back to Math concepts if you are to need additional assistance.

Look up by the name of the channel	\longrightarrow	Melissa Lewis

or

With your cell phone
open up the camera
and focus on the QR
code. It will take you
to my YouTube
channel!

The reminders below have been modified, please take note of points 2,3 and 4.-Thank you!

- Please do not separate either packet or remove any pages from any packet.
- ALL math exit tickets will be done remotely. They will be submitted either via edlight or google form.
- ALL math homework with also be done 100% remotely. Homework with MOSTLY be submitted via google form, occasionally via edlight.
- My GOAL is for families NOT to have to turn in ANY math packet.

Name: \qquad
BCCS-B

Week 16 Day 1 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I find whole number quotients using a division algorithm?
Objective: I can find whole number quotients by using a place value chart to support a standard division algorithm

Do Now

$75 \div 3$

$3 \longdiv { 7 5 }$

Check Your Work
quotient $=$ \qquad
remainder $=$ \qquad

Today we are going to review dividing \qquad digit \qquad .
First, let's review some important terms:
Dividend: \qquad
Divisor: \qquad
Quotient: \qquad

Name: \qquad
BCCS-B

Input

We are going to watch a quick video that reviews the steps of long division. After, we will review the steps in our tool kit and do some practice.
https://www.youtube.com/watch?v=VvQelzRQe7k
LONG DIIISION

Divisort a number divided into another number.

Dividend: a number that is to be divided by another number
Quetient the number that repults from the.division of one number by another 2 THE ANSWER?
Remainder: the amount left over when a number cannot be divided exactly by another number.

Monkeys
Smell
Bad

Name:
BCCS-B
Input

Problem 1:

5 tens 7 ones $\div 3$
Rewrite this equation in standard form: \qquad
Draw a place value chart:
\square

Standard Algorithm:

Your Turn:
4 tens 8 ones $\div 4$
Rewrite in standard form: \qquad

Standard Algorithm:

Name:
BCCS-B
Input

Week 16 Day 1 Date: \qquad
Howard Morehouse Hampton

Problem 2: 8 tens 6 ones $\div 5$

Rewrite in standard form: \qquad
Place Value Chart
Standard Algorithm:
\square

Your turn:
6 tens 3 ones $\div 4$
Rewrite in standard form:
Place Value Chart
Standard Algorithm

Name:
BCCS-B

Input
Problem 3: Solve without a place value chart
7 tens 4 ones $\div 8$
Standard form: \qquad
Solve:

Your Turn

6 tens 4 ones $\div 7$

Standard form: \qquad
Solve:

Name:
BCCS-B
CFU

Week 16 Day 1 Date: \qquad
Howard Morehouse Hampton

Here's a few more to try on your own:

$87 \div 9$	$76 \div 5$

Application Problem

Malory's family is going to buy oranges. The Grand Market sells oranges at 3 pounds for 87 cents. How much does 1 pound of oranges cost at Grand Market?

Name:
BCCS-B

Week 16 Day 1 Date: \qquad
Howard Morehouse Hampton

Exit Ticket-google form

Solve using the standard algorithm.

1. $93 \div 7$
2. $99 \div 8$

Homework-google form

| $1.84 \div 2$ | 2. | $84 \div 4$ |
| :--- | :--- | :--- | :--- |
| | | |
| | | |
| $48 \div 3$ | 4. | $80 \div 5$ |

Name: \qquad
BCCS-B

Week 16 Day 2 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I describe a remainder?
Objective: I can describe remainders when dividing and solving word problems.

Do Now

Two friends start a business writing and selling comic books. After 1 month, they have earned $\$ 38$. How can they fairly share their earnings? Use CUBES to solve.

Input
Problem 1: Model division with remainders in the tens and ones places using place value disks, and then relate it to a long division model.
$41 \div 3$

Place value	Standard algorithm

Name:

BCCS-B
Input
Your Turn
$37 \div 3$

Place value	Standard algorithm

We can say that \qquad divided by \qquad equals \qquad with a remainder of \qquad .

We can check our quotient by \qquad .

Check:
Problem 2: Share $\$ 64$ as 6 tens and 4 ones equally among 4 friends Place Value Chart:
\qquad . We can just by doing \qquad .

Name:
BCCS-B

Input

Your Turn

Share $\$ 45$ as 4 tens and 5 ones equally among 3 friends/
Place Value Chart:

Each friend will get \qquad . I can check by doing _.

Check:

Name: \qquad
BCCS-B

Week 16 Day 2 Date: \qquad
Howard Morehouse Hampton

Application Problem

The place value disk model is showing $72 \div 3$. Complete the model. Explain what happens to the 1 ten that is remaining in the tens column.

Exit Ticket-ed light

Molly's photo album has a total of 97 pictures. Each page of the album holds 6 pictures. How many pages can Molly fill? Will there be any pictures left? If so, how many? Use place value disks to solve.

Name: \qquad Week 16 Day 2 Date: \qquad
BCCS-B
Howard Morehouse Hampton

Homework

The place value disk model is showing $67 \div 4$. Complete the model. Explain what happens to the 2 tens that are remaining in the tens column.

10	
10	
(10)	
$(10$	1
(10)	
(10)	

The $\mathbf{2}$ tens that are remaining in the tens column \qquad
\qquad
\qquad
\qquad

Name: \qquad
BCCS-B
LEQ: How can I use an area model to solve division problems without remainders?
Objective: I can use an area model to show division that does not include remainders.

Do Now
 A

Number correct: \qquad

1.	$20 \div 2=$	
2.	$4 \div 2=$	
3.	$24 \div 2=$	
4.	$30 \div 3=$	
5.	$6 \div 3=$	
6.	$36 \div 3=$	
7.	$40 \div 4=$	
8.	$8 \div 4=$	
9.	$48 \div 4=$	
10.	$2 \div 2=$	
11.	$40 \div 2=$	
12.	$42 \div 2=$	
13.	$3 \div 3=$	
14.	$60 \div 3=$	
15.	$63 \div 3=$	
16.	$4 \div 4=$	
17.	$80 \div 4=$	
18.	$84 \div 4=$	

23.	$68 \div 2=$	
24.	$96 \div 3=$	
25.	$86 \div 2=$	
26.	$93 \div 3=$	
27.	$88 \div 4=$	
28.	$99 \div 3=$	
29.	$66 \div 3=$	
30.	$66 \div 2=$	
31.	$40 \div 4=$	
32.	$80 \div 4=$	
33.	$60 \div 4=$	
34.	$68 \div 4=$	
35.	$20 \div 2=$	
36.	$40 \div 2=$	
37.	$30 \div 2=$	
38.	$36 \div 2=$	
39.	$30 \div 3=$	
40.	$39 \div 3=$	

Name: \qquad
BCCS-B
Week 16 Day 3 Date: \qquad
Howard Morehouse Hampton

B
Number correct: \qquad

1.	$30 \div 3=$	
2.	$9 \div 3=$	
3.	$39 \div 3=$	
4.	$20 \div 2=$	
5.	$6 \div 2=$	
6.	$26 \div 2=$	
7.	$80 \div 4=$	
8.	$4 \div 4=$	
9.	$84 \div 4=$	
10.	$2 \div 2=$	
11.	$60 \div 2=$	
12.	$62 \div 2=$	
13.	$3 \div 3=$	
14.	$90 \div 3=$	
15.	$93 \div 3=$	
16.	$8 \div 4=$	
17.	$40 \div 4=$	
18.	$48 \div 4=$	
19.	$50 \div 5=$	
20.	$60 \div 5=$	
21.	$70 \div 5=$	

23.	$86 \div 2=$	
24.	$69 \div 3=$	
25.	$68 \div 2=$	
26.	$96 \div 3=$	
27.	$66 \div 3=$	
28.	$99 \div 3=$	
29.	$88 \div 4=$	
30.	$88 \div 2=$	
31.	$40 \div 4=$	
32.	$80 \div 4=$	
33.	$60 \div 4=$	
34.	$64 \div 4=$	
35.	$20 \div 2=$	
36.	$40 \div 2=$	
37.	$30 \div 2=$	
38.	$38 \div 2=$	
39.	$30 \div 3=$	
40.	$36 \div 3=$	
41.	$42 \div 3=$	
42.	$60 \div 3=$	
43.	$54 \div 3=$	

Name:
BCCS-B

Week 16 Day 3 Date: \qquad
Howard Morehouse Hampton

Input
Problem 1: Decompose $48 \div 4$ from whole to part.
Draw an area model showing 48 as the area and 4 as the width.

Break the area model above into tens and ones.

There are \qquad tens in 48 and \qquad ones.

4 goes into 40 \qquad times.

4 goes into 8 \qquad times.

This tells us that $48 \div 4=$ \qquad

Draw a number bond to match:

Name:
BCCS-B

Input
Your Turn
Decompose $69 \div 3$ from whole to part.
Draw an area model showing 69 as the area and 3 as the width.

Break the area model above into tens and ones.
There are \qquad tens in 69 and \qquad ones.

3 goes into 60 \qquad times.

3 goes into 9 \qquad times.

This tells us that $69 \div 3=$ \qquad
Draw a number bond to match:

Now lets relate both of the previous problems to a standard algorithm:

$48 \div 4$	$69 \div 3$

Name:
BCCS-B

Week 16 Day 3 Date: \qquad
Howard Morehouse Hampton

Input
Review of long division:

Problem 2:
$96 \div 4=$ \qquad Check:

Name:
BCCS-B

Input

Your turn

$45 \div 3=$ \qquad

CFU

Try a few more on your own

$34 \div 3=$	$76 \div 4=$	$57 \div 4$
Check:		
	Check:	Check:

Name: \qquad
BCCS-B

Week 16 Day 3 Date: \qquad Howard Morehouse Hampton

Application Problem

Solve $96 \div 6$ using an area model and the standard algorithm.

Exit ticket-ed light

Tony drew the following area model to find an unknown length. What division equation did he model?

Equation: \qquad \div \qquad
\qquad
Solve using a long division algorithm:

Name: \qquad

BCCS-B

Week 16 Day 3 Date: \qquad
Howard Morehouse Hampton

Homework-google form

1. Maria solved a division problem by drawing an area model.
a. Look at the area model. What division problem did Maria solve?

Equation: \qquad \div \qquad $=$ \qquad
Solve using a long division algorithm:

Solve the following using a long division algorithm

$45 \div 3=\ldots$	$57 \div 4=\ldots$

Name:
BCCS-B

Week 16 Day 4 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I use an area model to show the division of numbers with remainders?

Objective: I can solve division problems with remainders using the area model.
Do Now

A rectangle has an area of 36 square units and a width of 2 units. What is the unknown side length?

Input
Problem 1: $76 \div 3$
Draw an area model and solve with a long division algorithm

Name:
BCCS-B
$67 \div 3=$ \qquad

Your Turn:

Week 16 Day 4 Date: \qquad
Howard Morehouse Hampton

Draw an area model and solve with a long division area model.

Problem 2:

Solve $37 \div 2$ using an area model. Use long division and the distributive property to record your work.

Your Turn

Solve $76 \div 3$ using an area model. Use long division and the distributive property to record your work.

Name: \qquad

BCCS-B

CFU

Week 16 Day 4 Date: \qquad
Howard Morehouse Hampton

Solve the following problems using the area model. Support the area model with long division or the distributive property.

4. $48 \div 3$	$5.49 \div 3$

Application Problem

Seventy-three students are divided into groups of 6 students each. How many groups of 6 students are there? How many students will not be in a group of 6 ?

Name:
BCCS-B

Week 16 Day 4 Date: \qquad
Howard Morehouse Hampton

Exit Ticket-google form

1. Kyle drew the following area model to find an unknown length. What division equation did he model?

2 | 40 | 18 |
| :--- | :--- | \(\begin{gathered}1 \begin{array}{l}square

unit\end{array}\end{gathered}\)
Equation: \qquad
2. Solve $93 \div 4$ using the area model, long division, and the distributive property.

Name:
BCCS-B

Week 16 Day 4 Date: \qquad Howard Morehouse Hampton

Homework-google form

1. Solve $35 \div 2$ using an area model. Use long division and the distributive property to record your work.
2. Solve $79 \div 3$ using an area model. Use long division and the distributive property to record your work.

Name: \qquad
BCCS-B

Week 16 Day 5 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I prove my understanding of Topic E?
Objective; I can prove my understanding of topic E by scoring an 80% or better on my quiz.

Do Now-sprint

Number Correct: \qquad

1.	$8 \div 2$	$\mathrm{Q}=$	$\mathrm{R}=$
2.	$9 \div 2$	$\mathrm{Q}=$	$\mathrm{R}=$
3.	$4 \div 4$	$\mathrm{Q}=$	$\mathrm{R}=$
4.	$5 \div 4$	$\mathrm{Q}=$	$\mathrm{R}=$
5.	$7 \div 5$	$\mathrm{Q}=$	$\mathrm{R}=$
6.	$8 \div 5$	$\mathrm{Q}=$	$\mathrm{R}=$
7.	$5 \div 3$	$\mathrm{Q}=$	$\mathrm{R}=$
8.	$6 \div 3$	$\mathrm{Q}=$	$\mathrm{R}=$
9.	$8 \div 4$	$\mathrm{Q}=$	$\mathrm{R}=$
10.	$9 \div 4$	$\mathrm{Q}=$	$\mathrm{R}=$
11.	$2 \div 2$	$\mathrm{Q}=$	$\mathrm{R}=$
12.	$3 \div 2$	$\mathrm{Q}=$	$\mathrm{R}=$
13.	$7 \div 3$	$\mathrm{Q}=$	$\mathrm{R}=$
14.	$8 \div 3$	$\mathrm{Q}=$	$\mathrm{R}=$
15.	$9 \div 3$	$\mathrm{Q}=$	$R=$

23.	$6 \div 2$	$\mathrm{Q}=$	$\mathrm{R}=$
24.	$7 \div 2$	$\mathrm{Q}=$	$\mathrm{R}=$
25.	$3 \div 3$	$\mathrm{Q}=$	$\mathrm{R}=$
26.	$4 \div 3$	$\mathrm{Q}=$	$\mathrm{R}=$
27.	$6 \div 4$	$\mathrm{Q}=$	$\mathrm{R}=$
28.	$7 \div 4$	$\mathrm{Q}=$	$\mathrm{R}=$
29.	$6 \div 6$	$\mathrm{Q}=$	$\mathrm{R}=$
30.	$7 \div 6$	$\mathrm{Q}=$	$\mathrm{R}=$
31.	$4 \div 2$	$\mathrm{Q}=$	$\mathrm{R}=$
32.	$5 \div 2$	$\mathrm{Q}=$	$\mathrm{R}=$
33.	$9 \div 3$	$\mathrm{Q}=$	$\mathrm{R}=$
34.	$9 \div 5$	$\mathrm{Q}=$	$\mathrm{R}=$
35.	$7 \div 7$	$\mathrm{Q}=$	$\mathrm{R}=$
36.	$9 \div 9$	$\mathrm{Q}=$	$\mathrm{R}=$
37.	$13 \div 4$	$\mathrm{Q}=$	$\mathrm{R}=$

Name:
BCCS-B

Division with Remainders

1.	$9 \div 8$	$\mathrm{Q}=$	$\mathrm{R}=$
2.	$8 \div 8$	$\mathrm{Q}=$	$\mathrm{R}=$
3.	$9 \div 6$	$\mathrm{Q}=$	$\mathrm{R}=$
4.	$8 \div 6$	$\mathrm{Q}=$	$\mathrm{R}=$
5.	$5 \div 5$	$\mathrm{Q}=$	$\mathrm{R}=$
6.	$6 \div 5$	$\mathrm{Q}=$	$\mathrm{R}=$
7.	$7 \div 4$	$\mathrm{Q}=$	$\mathrm{R}=$
8.	$6 \div 4$	$\mathrm{Q}=$	$\mathrm{R}=$
9.	$5 \div 3$	$\mathrm{Q}=$	$\mathrm{R}=$
10.	$6 \div 3$	$\mathrm{Q}=$	$\mathrm{R}=$
11.	$2 \div 2$	$\mathrm{Q}=$	$\mathrm{R}=$
12.	$3 \div 2$	$\mathrm{Q}=$	$\mathrm{R}=$
13.	$3 \div 3$	$\mathrm{Q}=$	$\mathrm{R}=$
14.	$4 \div 3$	$\mathrm{Q}=$	$\mathrm{R}=$
15.	$8 \div 7$	$\mathrm{Q}=$	$\mathrm{R}=$

Week 16 Day 5 Date: \qquad
Howard Morehouse Hampton

Number Correct: \qquad
Improvement: \qquad

23.	$4 \div 2$	$\mathrm{Q}=$	$\mathrm{R}=$
24.	$5 \div 2$	$\mathrm{Q}=$	$\mathrm{R}=$
25.	$8 \div 4$	$\mathrm{Q}=$	$\mathrm{R}=$
26.	$9 \div 4$	$\mathrm{Q}=$	$\mathrm{R}=$
27.	$9 \div 3$	$\mathrm{Q}=$	$\mathrm{R}=$
28.	$8 \div 3$	$\mathrm{Q}=$	$\mathrm{R}=$
29.	$9 \div 5$	$\mathrm{Q}=$	$\mathrm{R}=$
30.	$6 \div 6$	$\mathrm{Q}=$	$\mathrm{R}=$
31.	$7 \div 6$	$\mathrm{Q}=$	$\mathrm{R}=$
32.	$9 \div 9$	$\mathrm{Q}=$	$\mathrm{R}=$
33.	$7 \div 7$	$\mathrm{Q}=$	$\mathrm{R}=$
34.	$9 \div 2$	$\mathrm{Q}=$	$\mathrm{R}=$
35.	$8 \div 2$	$\mathrm{Q}=$	$\mathrm{R}=$
36.	$37 \div 8$	$\mathrm{Q}=$	$\mathrm{R}=$
37.	$50 \div 9$	$\mathrm{Q}=$	$\mathrm{R}=$

Name:
BCCS-B

Week 16 Day 5 Date: \qquad
Howard Morehouse Hampton

Quiz review
Dividing with a place value chart and standard algorithm
$45 \div 3=$ \qquad
Place value chart
Standard Algorithm
$67 \div 4=$ \qquad
Place value chart
Standard Algorithm

Henry bough 37 cookies for the party and he was going to share them with 5 of his co-workers. How many cookies would each of his co-workers get? Would there be any left over for Henry?

Name
Brighter Choice Charter School for Boys
\qquad

$4^{\text {th }}$ Grade Math Remote Learning Packet

Week 17

Subscribe to my YouTube Channel to catch up with previously taught lessons or refer back to Math concepts if you are to need additional assistance.

Look up by the name of the channel	\longrightarrow	Melissa Lewis

or

With your cell phone
open up the camera
and focus on the QR
code. It will take you
to my YouTube
channel!

The reminders below have been modified, please take note of points

2,3 and 4.-Thank you!

- Please do not separate either packet or remove any pages from any packet.
- ALL math exit tickets will be done remotely. They will be submitted either via edlight or google form.
- ALL math homework with also be done 100% remotely. Homework with MOSTLY be submitted via google form, occasionally via edlight.
- My GOAL is for families NOT to have to turn in ANY math packet.

Name:

BCCS-B

Week 17 Day 1 Date: \qquad
Howard Morehouse Hampton

LEQ: How do I use factor pairs to determine if a number is prime or composite?
Objective: I can find factor pairs for numbers to 100 and use understanding of factors to define prime and composite.

Do Now
$8 \times \ldots=96$. Find the unknown side length, or factor. Use an area model to solve the problem.

Area Model
Standard Algorithm

Input
Review of terms:
Factors: \qquad
Product: \qquad
https://www.youtube.com/watch?v=2hVQLG-QTfI
Prime number: \qquad
Composite number: \qquad
Factor Pair: \qquad

Name:
BCCS-B

Week 17 Day 1 Date: \qquad
Howard Morehouse Hampton

Input
Problem 1: Identify the factors and product represented in an array.
Draw a 1×8 array and a 2×4 array

1×8	2×4

What are the factors and product in $1 \times 8=8$?
The factors are \qquad and \qquad . The product is \qquad .

What are the factors and product in $2 \times 4=8$?
The factors are \qquad and \qquad . The product is \qquad .

So we can say the factors of 8 are \qquad .

The factor pairs of 8 are:

Name:
BCCS-B

Input
Your turn
Draw an array to represent 1×18 and 2×9

1×18	2×9

What are the factors and product in $1 \times 18=18$?
The factors are \qquad and \qquad . The product is \qquad .

What are the factors and product in $2 \times 9=18$?
The factors are \qquad and \qquad . The product is \qquad .

So we can say the factors of 18 are \qquad .

The factor pairs of 8 are:

Name: \qquad
BCCS-B

Input
Problem 2: Identify factors to define prime and composite numbers.
$2 \times 8=16$
What are the factors is the number sentence above? \qquad
What are 2 other multiplication number sentences with the same product? and \qquad
So the factors of 16 are: \qquad
Is this number prime or composite and how do you know?
This number is \qquad because \qquad
$1 \times 7=7$

What are the factors is the number sentence above? \qquad
Is there any other multiplication sentence that gives us the same product? \qquad
How do you know? \qquad
So the factors of 7 are \qquad .

Is this number prime or composite and how do you know?
This number is \qquad because \qquad
\qquad

Name: \qquad

BCCS-B
Input
Your turn
$2 \times 5=10$

What are the factors in this number sentence? \qquad
What is another way to get the same product? \qquad
The factors of 10 are \qquad
Is 10 prime or composite and how do you know? \qquad

Problem 3: Identify factors of numbers and determine if they are prime or composite.

Let's use a table to record the factor pairs of 35 .

Is 35 prime or composite and why?

Name:
BCCS-B

Input

Factor pairs of 23 ?

Is 23 prime or composite and why?

Your Turn

Factor pairs of $27 ?$

Is 27 prime or composite and why?

Name: \qquad
BCCS-B

CFU

Record the factors of the given numbers as multiplication sentences and as a list in order from least to greatest. Classify each as prime (P) or composite (C). The first problem is done for you.

	Multiplication Sentences	Factors	P or C
a.	4	The factors of 4 are: $1,2,4$	C
b.	6	The factors of 6 are:	
c.	$7 \times 2=4$	The factors of 7 are:	
d.	9	The factors of 9 are:	

Application problem

Sheila has 28 stickers to divide evenly among 3 friends. She thinks there will be no leftovers. Use what you know about factor pairs to explain if Sheila is correct.
\square

Name:
BCCS-B

Week 17 Day 1 Date: \qquad
Howard Morehouse Hampton

Exit ticket-ed light

Record the factors of the given numbers as multiplication sentences and as a list in order from least to greatest. Classify each as prime (P) or composite (C).

	Multiplication Sentences		Factors
a.	9	The factors of 9 are:	Prime (P) or Composite (C)
b.	12	The factors of 12 are:	
c.	19	The factors of 19 are:	

Name: \qquad

BCCS-B

Week 17 Day 1 Date: \qquad
Howard Morehouse Hampton

Homework-google form
Record the factors of the given numbers as multiplication sentences and as a list in order from least to greatest. Classify each as prime (P) or composite (C). The first problem is done for you.

Multiplication Sentences	Factors a. b.	10	P or C
c.	11	The factors of 8 are: $1,2,4,8$	C
d.	14	The factors of 10 are:	
e.	17	The factors of 11 are:	
f.	20	The factors of 17 are:	

Name: \qquad
BCCS-B

Week 17 Day 2 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I use division to determine if a number is a factor of another number?

Objective: I can use division to determine if a number is a factor of another number.

Do Now
Sasha says that every number in the twenties is a composite number because 2 is even. Amanda says there are two prime numbers in the twenties. Who is correct? How do you know?

Circle the composite numbers.

$$
20212223242526272829
$$

\qquad is right because \qquad

Input
Problem 1: Use division to find factors of larger numbers.
$28=7 x$ \qquad

Is 10 a factor of 28 ? \qquad How do you know? \qquad
\qquad

Name:
BCCS-B

Input

Week 17 Day 2 Date: \qquad
Howard Morehouse Hampton

How can we determine if 3 is a factor of 54? \qquad
Long division algorithm:

Your Turn:
Determine if 2 is a factor of 54 by using division:

Is there another way to determine if 2 is a factor of 54 ?
\qquad
\qquad
Rule: All \qquad numbers will have \qquad as a factor.

Name: \qquad
BCCS-B
CFU

Explain your thinking or use division to answer the following.

Application Problem

Greg said that all odd numbers are prime, is this statement correct? How do you know?
\qquad
\qquad
\qquad

Name: \qquad
BCCS-B

Week 17 Day 2 Date: \qquad
Howard Morehouse Hampton

Exit ticket-google form

Explain your thinking or use division to answer the following.

a. Is 2 a factor of 34 ?	b. Is 3 a factor of 34 ?

Homework-google form

Explain your thinking or use division to answer the following.

| a. Is 2 a factor of $72 ?$ | b. Is 2 a factor of $73 ?$ |
| :--- | :--- | :--- |
| c. Is 3 a factor of $72 ?$ | d. Is 2 a factor of $60 ?$ |

Name: \qquad
BCCS-B

Week 17 Day 3 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I determine if a number is a multiple of another number?
Objective; I can determine if a number is a multiple by using what I know about skip counting and multiplication

Do Now

$8 \mathrm{~cm} \times 12 \mathrm{~cm}=96$ square centimeters. Imagine a rectangle with an area of 96 square centimeters and a side length of 4 centimeters. What is the length of its unknown side?
\square

Input
https://www.youtube.com/watch?v=PRERRxSRNCO
What is a multiple?

Is 12 a multiple of 3 ? \qquad why? \qquad

Is 24 a multiple of 6 ? \qquad why? \qquad

Name: \qquad

BCCS-B
Input
How is a multiple different from a factor? \qquad
\qquad
\qquad
Is 4 a multiple of $24 ?$ \qquad
How do you know? \qquad
Is 5 a multiple of 24? \qquad
How do you know? \qquad
Your turn
Is 8 a multiple of 24 ? \qquad
How do you know? \qquad

List the factor and multiples of the following:

Number	Factors	Multiples (first 5)
4		
9		
12		

Name:
BCCS-B

Week 17 Day 3 Date: \qquad
Howard Morehouse Hampton

CFU

For each of the following, time yourself for 1 minute. See how many multiples you can write.
a. Write the multiples of 5 starting from 100.
b. Write the multiples of 4 starting from 20.
c. Write the multiples of 6 starting from 36 .

Exit Ticket-google form

1. Fill in the unknown multiples of 11 .
$5 \times 11=$
$6 \times 11=$ \qquad
$7 \times 11=$ \qquad
$8 \times 11=$ \qquad
$9 \times 11=$ \qquad
2. Complete the pattern of multiples by skip-counting.

7, 14, \qquad , 28, \qquad , \qquad _-_ ,

Name: \qquad
BCCS-B

Week 17 Day 3 Date: \qquad Howard Morehouse Hampton

Homework-google form

For each of the following, time yourself for 1 minute. See how many multiples you can write.
a. Write the multiples of 5 starting from 75.
b. Write the multiples of 4 starting from 40 .
c. Write the multiples of 6 starting from 24.

Use mental math, division, or the associative property to solve. (Use scratch paper if you like.)
a. Is 12 a multiple of 3 ? \qquad Is 3 a factor of 12 ? \qquad
b. Is 48 a multiple of 8 ? \qquad Is 48 a factor of 8 ? \qquad
c. Is 56 a multiple of 6 ? \qquad Is 6 a factor of 56 ? \qquad

Name: \qquad

BCCS-B

Week 17 Day 4 Date: \qquad
Howard Morehouse Hampton

LEQ: How can multiples help me determine the properties of prime and composite numbers?

Objective: I determine the properties of prime and composite numbers to 100 by using multiples

Do Now

Take 1 minute to list as many multiples of 3 as you can:

Take 1 minute to list the factors of 3:

Take 1 minute to list as many multiples of 6 as you can:

Take 1 minute to list the factors of 6:

Input
Looking at the number chart on the next page, what is the smallest prime number you see? How do you know?

What is the largest composite number? How do you know?

Name: \qquad
BCCS-B

Input

1. Follow the directions.

Shade the number 1 red.
a. Circle the first unmarked number.
b. Cross off every multiple of that number except the one you circled. If it's already crossed off, skip it.
c. Repeat Steps (a) and (b) until every number is either circled or crossed off.
d. Shade every crossed out number in orange.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Name: \qquad

BCCS-B

Input
2. a. List the circled numbers.
b. Why were the circled numbers not crossed off along the way?
c. Except for the number 1, what is similar about all of the numbers that were crossed off?
d. What is similar about all of the numbers that were circled?

Name: \qquad
BCCS-B

Week 17 Day 4 Date: \qquad
Howard Morehouse Hampton

Exit ticket-ed light

Use the calendar below to complete the following:

1. Cross off all composite numbers.
2. Circle all of the prime numbers.
3. List any remaining numbers.

Sunday Saturday Monday Tuesday Wednesday Thursday\quad
3

Homework-google form

1. List the first 5 multiples of 4 . \qquad
List the factors of 4. \qquad
Is 4 prime or composite? \qquad
2. List the first 5 multiples of 9 . \qquad
List the factors of 9. \qquad
Is 9 prime of composite? \qquad

Name: \qquad
BCCS-B

Week 17 Day 5 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I prove my understanding of Topic F?

Objective; I can prove my understanding of topic F by scoring an 80% or better on my quiz.

Review for Quiz

	Multiplication Sentences	Factors	P or C
a.	4 $1 \times 4=4 \quad 2 \times 2=4$	The factors of 4 are: $1,2,4$	C
b.	6	The factors of 6 are:	
c.	7	The factors of 7 are:	
d.	9	The factors of 9 are:	
e.	12	The factors of 12 are:	
f.	13	The factors of 13 are:	
g.	15	The factors of 15 are:	
h.	16	The factors of 16 are:	
i.	18	The factors of 18 are:	
j.	19	The factors of 19 are:	
k.	21	The factors of 21 are:	
l.	24		

Name: \qquad
BCCS-B

Week 17 Day 5 Date: \qquad
Howard Morehouse Hampton
2. Find all factors for the following numbers, and classify each number as prime or composite. Explain your classification of each as prime or composite.

Factor Pairs for 25	

Factor Pairs for 28	

Factor Pairs for 29	

there is no MATH homework today or MATH exit ticket

