

5th Grade Math Remote Learning Packet

Name

Week 16

Dear Educator,

My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

(Parent Signature)

(Date)

Parents please note that all academic packets are also available on our website at <u>www.brighterchoice.org</u> under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

Name:	Week 16 Day 1 Date:			
BCCS-Boys	Stanford MIT			

<u>Do Now</u>

Find the number that makes an equivalent fraction.

Input Activity:

Problem 1:

1 third + 1 third = _____

Draw a number line and split it into thirds.

On the number line, show how to add each $\frac{1}{3}$ with arrows designating lengths.

Express this as an addition sentence and a multiplication equation and solve.

Addition Sentence			
-------------------	--	--	--

Multiplication Equation_____

Problem 2:

1 fourth + 1 fourth + 1 fourth = _____

Draw a number line and split it into fourths.

On the number line, show how to add each $\frac{1}{4}$ with arrows designating lengths.

Express this as an addition sentence and a multiplication equation and solve.

Addition Sentence			
--------------------------	--	--	--

Multiplication Equation

3 eighths + 3 eighths + 1 eighth = _____

Draw a number line and split it into eighths.

On the number line, show how to add each $\frac{3}{8}$ and $\frac{1}{8}$ with arrows designating lengths.

Express this as an addition sentence and a multiplication equation and solve.

Addition Sentence _____

Multiplication Equation_____

$$\frac{2}{2} + \frac{2}{2} + \frac{2}{2} =$$

Draw a number line and split it into halves. Label it from 0 halves to 6 halves.

On the number line, show how to add each $\frac{2}{2}$ with arrows designating lengths.

Express this as a different equation and solve. Equation_____

Change your improper fraction to a mixed number.

$$\frac{5}{5} + \frac{3}{5} =$$

Draw a number line and split it into fifths. Mark the endpoints 0 fifths and 10 fifths. Find the halfway point and label it $\frac{5}{5}$ on the bottom. Fill in the rest from $\frac{0}{5}$ to $\frac{10}{5}$. Record the whole number equivalents above the number line.

On the number line, show the sum of $\frac{5}{5}$ and $\frac{3}{5}$ with arrows designating lengths.

Solve then change your improper fraction to mixed number.

$$\frac{6}{3} + \frac{1}{3}$$

Draw a number line mark the endpoints 0 thirds and 9 thirds. Fill in the rest from $\frac{0}{3}$ to $\frac{9}{3}$. Record the whole number equivalents above the number line.

On the number line, show the sum of $\frac{6}{3}$ and $\frac{1}{3}$ with arrows designating lengths.

Solve then change your improper fraction to a mixed number.

Problem 7:

Express each fraction as the sum of two or three equal fractional parts two different ways.

 $\frac{10}{4}$

Problem 8:

Express each fraction as the sum of two or three equal fractional parts two different ways.

Problem Set:

Express each fraction as the sum of two or three equal fractional parts.

Application Problem:

Marisela cut four equivalent lengths of ribbon. Each was 3 fourths of a yard long. How many yards of ribbon did she cut? Draw a number line to represent the problem.

Exit Ticket

Show each expression on a number line. Solve.

Express each fraction as the sum of two or three equal fractional parts.

Name:	Week 16 Day 2 Date:

BCCS-Boys

Stanford MIT

<u>Do Now</u>

Show each expression on a number line. Solve.

Review:

Change the mixed number to an improper fraction:

$$6\frac{7}{8}$$
 $5\frac{2}{3}$

Change the improper fraction to a mixed number:

13	29
5	3

Input Activity:

Divisibility Rules - when	can be	_ easily by other
Rules for:		
2: if the <u>last</u> number is an), it is divisible by 2.	_ number (it ends in	
Ex:		
5: if the <u>last</u> number ends in a	or, it is divisible	by 5.
Ex:		
10: if the <u>last</u> number ends in a	, it is divisible by 5.	
Ex:		
3: if the of the digits is a _	of 3, it is divisi	ble by 3.
Ex:		
9: if the of the digits is a _	of 9, it is divisi	ble by 9.
Ex:		

	Problem 1					
672	2	5	10	3	9	7

	Problem 2					
5,430	2	5	10	3	9	

	Problem 3					
1,265	2	5	10	3	9	

<u>Problem 4</u>

4,582 2 5 10 3 9

12 010	<u>Problem 5</u>					
12,910	2	5	10	3	9	

Problem 6

21,451 2 5 10 3 9

<u>Composite Numbers</u> – numbers that more than ______ factors

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Eratosthenes Sieve

- 1. Cross out 1. It is neither prime nor composite.
- Circle 2. It is the only even prime number.
 Cross out any multiple of
 Those are composite.
- Circle 3. It prime. Cross out any multiple of 3. Those are composite.
- Circle 5. It is prime.
 Cross out any multiple of
 Those are composite.
- Circle 7. It is prime.
 Cross out any multiple of
 Those are composite.
- Circle 11. It is prime. Cross out any multiple of 11. Those are composite.
- Circle any remaining numbers. They are prime.

Prime Numbers:

Problem Set

Test the divisibility for the following numbers:

4,893	2	5	10	3	9
17,370	2	5	10	3	9
10,951	2	5	10	3	9

Determine whether the following numbers are prime or composite. Circle P or C.

67	Ρ	С		28	Р	С
99	Р	С		35	Р	С

Exit Ticket

Test the divisibility for the following numbers:

27,313	2	5	10	3	9
90.852	2	5	10	3	9

Determine whether the following numbers are prime or composite. Circle P or C.

39	Ρ	С	55	Ρ	С
71	Р	С	47	Р	C

Name:	Week 16 Day 3 Date:
BCCS-Boys	Stanford MIT

<u>Do Now</u>

Create an equivalent fraction to the follow fractions:

1.
$$\frac{3}{5}$$
 = **2**. $\frac{5}{7}$ = **3**. $\frac{2}{9}$ =

Find the missing numerator or denominator to create equivalent fractions.

4.
$$\frac{6}{9} = \frac{1}{27}$$
 5. $\frac{8}{5} = \frac{32}{5}$ 6. $\frac{3}{4} = \frac{1}{28}$

	<u>Key Terms:</u>					
	Reduce – to make	in	or			
	Other words that mean the same as reduce:					
	SimplifyLowest TermsSimplest Form					
	Factor – the	_that we				
	Common Factor – a	that	or more	have in		
X	Greatest Common Factor (GCF) – the factor that 2 or more have in Finding the GCE of numbers:					
Mode.	10:,, _ 14:,, _	,		 List the factors of each number. 		
	C E.			2. Circle the common factors.		
	GCF:			 The largest common factor is called the GCF. 		

Input Activity

Problem 1

Find the GCF of 12 and 15.

12: _____, ____, ____, ____, ____, ____, ____,

15: _____, _____, _____, _____

Common Factors _____

GCF_____

Problem 2

Find the GCF of 16 and 18.

16: _____, ____, ____, ____, ____, ____

18: _____, ____, ____, ____, ____, ____, ____,

Common Factors _____

GCF_____

Find the GCF of 10 and 20.

10: _____, ____, ____, ____

20: ____, ____, ____, ____, ____, ____, ____,

Common Factors _____

GCF_____

Problem 4

Find the GCF of 30 and 24.

30: ____, ____, ____, ____, ____, ____, ____, ____,

24: ____, ____, ____, ____, ____, ____, ____, ____, ____,

Common Factors _____

GCF_____

Reduce fractions using GCF:

GCF:_____

Now divide the fraction by your

GCF.

22

Reduce fractions using GCF:

Now divide the fraction by your

GCF.

36

Reduce fractions using GCF:

35

25

35: ____, ____, ____, ____

25:____, ____, ____

CF:_____

GCF:_____

Now divide the fraction by your

GCF.

 $\frac{35}{25}$

Problem Set:

Reduce the fraction by finding the GCF first.

$\frac{18}{28}$					
20 18:,,,,,					
28:,,,,,,					
CF: GCF:					
Now divide the fraction by your					
GCF.					
$\frac{18}{28}$					
<u>15</u> 30					
15:,,,					
30:,,,,,,,,					
CF: GCF:					
Now divide the fraction by your GCF.					
$\frac{15}{30}$					

Application Problem

Tony needs to ship 12 comedy DVDs, and 30 musical DVDs. He can pack only one type of DVD in each box and he must pack the same number of DVDs in each box. What is the greatest number of DVDs Tony can pack in each box?

12 _____

30 _____

GCF: _____

Answer: The greatest number of DVD's Tony can pack in each box is _____.

Exit Ticket

Reduce each fraction by finding the GCF first.

Name:	_ Week 16 Day 4 Date:		
BCCS-Boys	Stanford MIT		

<u>Do Now</u>

Reduce fractions using GCF:

 $\frac{32}{36}$

32: ____, ____, ____, ____, ____, ____, ____,

36:____, ____, ____, ____, ____, ____, ____, ____, ____, ____,

CF:_____

GCF:_____

Now divide the fraction by your

GCF.

32

	<u>Key Terms:</u>					
	Multiple - the we get from	numbers				
	Common Multiple - the that or m	nore have in				
	<u>Least Common Multiple (LCM)</u> – the or more numbers	common of two				
del:	Finding the LCM of numbers:					
MOOC	10:,,,, 20:,,,	 List the first 5 multiples of each number. 				
	CM:	2. If they have anything in common after 5 numbers, stop. If they don't have anything in common yet, you				
	LCM:	must keep your lists going.				
		 Circle the common multiple in both numbers. The lowest common multiple is called the LCM. 				
Input Activity

Problem 1

Find the LCM of 8 and 16.

8: ____, ____, ____, ____, ____, ____

16: ____, ____, ____, ____, ____,

Common Multiples _____

LCM_____

Problem 2

Find the LCM of 12 and 10.

12: _____, ____, ____, ____, ____, ____

10: ____, ____, ____, ____, ____,

Common Multiples _____

LCM____

Find the LCM of 9 and 6.

9: _____, _____, _____, _____, _____

6: _____, ____, ____, ____, ____, ____

Common Multiples: _____

LCM_____

Problem 4

Find the LCM of 3 and 4.

3: ____, ____, ____, ____, ____,

4: ____, ____, ____, ____, ____, ____

Common Multiples _____

Adding Fractions with unlike denominators using LCM

LCM:_____

Problem 7

Adding Fractions with unlike denominators using LCM

- $\frac{3}{12}+\frac{1}{4}$
- 4: ____, ____, ____, ____, ____, ____
- 12:____, ____, ____, ____, ____

Adding Fractions with unlike denominators using LCM

Problem Set:

Adding Fractions with unlike denominators using LCM

LCM:_____

Now change each fraction to its equivalent fraction and add.

 $\frac{3}{10} + \frac{2}{5}$

10: ____, ____, ____, ____, ____

5:____, ____, ____, ____, ____

LCM:_____

Application Problem:

Cups are sold 5 to a package and plates are sold 10 to a package. If you want to have the same number of each item for a party, what is the least number of packages of each you need to buy?

5	:										
					_		_	_	_	_	

10	•					
	-					

LCM:		

Answer: The least amount of each package you need is ______ packages of cups and _____packages of plates.

Exit Ticket

Add Fractions with unlike denominators using LCM

Name:	Week 16 Day 5 Date:

BCCS-Boys

Stanford MIT

Do Now

Find the LCM of 3 and 9.

3: ____, ____, ____, ____, ____

9:____, ____, ____, ____, ____

LCM:_____

Find the LCM of 20 and 30.

20: ____, ____, ____, ____

30:____, ____, ____, ____, ____, ____,

Input Activity:

Problem 1

Adding Fractions with unlike denominators using LCM

Problem Set:

Adding Fractions with unlike denominators using LCM

 $\frac{2}{3} + \frac{1}{2}$ 3: ____, ___, ___, ___, ___, ____, ____, ____, _____

LCM:_____

Now change each fraction to its equivalent fraction and add.

- $\frac{3}{4} + \frac{2}{3}$
- 4: ____, ____, ____, ____, ____
- 3:____, ____, ____, ____, ____
- LCM:_____

Application Problem:

Penny used $\frac{2}{5}$ lb of flour to bake a vanilla cake. She used another $\frac{3}{4}$ lb of flour to bake a chocolate cake. How much flour did she use altogether?

С

В

U

Ε

S

Answer Statement_____

Exit Ticket

Name_____

5th Grade Math Remote Learning Packet

Week 17

Dear Educator,

My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

(Parent Signature)

(Date)

Parents please note that all academic packets are also available on our website at <u>www.brighterchoice.org</u> under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

Name:	Week 17 Day 1 Date:
BCCS-Boys	Stanford MIT

Do Now

Sam made $\frac{2}{3}$ liter of punch and $\frac{3}{4}$ liter of tea to take to a party. How many liters of beverages did Sam bring to the party?

С	
U	
В	
E	
S Answer Statement	

 $\frac{2}{3} + \frac{5}{6}$ 3: ____, ___, ___, ___, ___, ____, ____, _____

Input Activity

Problem 1

Subtracting Fractions with unlike denominators using LCM

LCM:_____

Subtracting Fractions with unlike denominators using LCM

LCM:_____

Subtracting Fractions with unlike denominators using LCM

LCM:_____

Subtracting Fractions with unlike denominators using LCM

LCM:_____

Subtracting Fractions with unlike denominators using LCM

LCM:_____

Subtracting Fractions with unlike denominators using LCM

LCM:_____

Problem Set:

S	Subtracting Fractions with unlike denominators using
LCM	
$\frac{1}{2} - \frac{2}{3}$	2 <u>8</u>
2:	
8:	،،،،،،،،،،،،،،،،،،,,,
LCM:	

Now change each fraction to its equivalent fraction and subtract.

Application Problem:

A farmer uses $\frac{3}{4}$ of his field to plant corn, $\frac{1}{6}$ of his field to plant beans, and the rest to plant wheat. What fraction of his field is used for wheat?

Answer: ____

Exit Ticket

Subtract fractions with unlike denominators using LCM.

4: _____, ____, ____, ____, ____, ____

8: _____, _____, _____, _____, _____, _____

LCM: _____

Name:	Week 17 Day 2 Date:
BCCS-Boys	Stanford MIT

Do Now:

- $\frac{2}{3} \frac{2}{5}$ 3: ____, ___, ___, ___, ___, ____, ____
- 5:____, ____, ____, ____, ____

LCM:_____

 $\frac{5}{7} - \frac{2}{3}$ 7: ____, ____, ____, ____, ____, ____

3:____, ____, ____, ____, ____

Input Activity:

Problem 1

Subtracting Fractions with unlike denominators.

 $1 - \frac{1}{3}$

Problem 3

Subtracting Fractions with unlike denominators.

Subtracting Fractions with unlike denominators using LCM

$$1\frac{1}{2}-\frac{2}{3}$$

2: ____, ____, ____, ____, ____ 3:____, ____, ____, ____, ____
Subtracting Fractions with unlike denominators using LCM

$$1\frac{3}{4}-\frac{4}{5}$$

LCM:_____

Subtracting Fractions with unlike denominators using LCM

$$1\frac{4}{9}-\frac{1}{2}$$

9: ____, ____, ____, ____, ____ 2: ____, ____, ____, ____, ____

LCM:_____

Subtracting Fractions with unlike denominators.

 $1 - \frac{4}{5}$

Problem 8

Subtracting Fractions with unlike denominators.

Subtracting Fractions with unlike denominators using LCM

$$1\frac{1}{4}-\frac{1}{3}$$

LCM:_____

Subtracting Fractions with unlike denominators using LCM

$$1\frac{1}{5}-\frac{1}{3}$$

LCM:_____

Problem Set:

 Subtracting Fractions with unlike denominators using

 LCM

 1 $\frac{3}{8} - \frac{1}{2}$

 8: ____, ___, ___, ____, ____

 2: ____, ____, ____, _____

 LCM: _____

Now change each fraction to its equivalent fraction and subtract.

Now change each fraction to its equivalent fraction and subtract.

Application Problem:

The Napoli family had two bags of dry cat food. The yellow bag had $3\frac{5}{6}$ kg of cat food. The red bag had $\frac{3}{4}$ kg. How much more cat food did the yellow bag have than the red bag?

С

U B E S

Answer Statement_____

Exit Ticket

Subtract fractions with unlike denominators using LCM.

LCM: _____

Name:	Week 17 Day 3 Date:	
BCCS-Boys	Stanford MIT	

Do Now:

<u>Do Now</u>

 $1\frac{3}{12} - \frac{2}{3}$ 12: ____, ___, ___, ___, ___, ____, ____

LCM:_____

LCM:_____

Input Activity:

Problem 1

Auggie weeded $\frac{1}{5}$ of the garden, and Summer weeded some, too. When they were finished, $\frac{2}{3}$ of the garden still needed to be weeded. What fraction of the garden did Summer weed?

Kayla spent $\frac{1}{3}$ of her money on a pack of pens, $\frac{1}{2}$ of her money on a pack of markers, and $\frac{1}{8}$ of her money on a pack of pencils. What fraction of her money is left?

Shelby bought a 2-ounce tube of blue paint. She used $\frac{2}{3}$ ounce to paint the water, $\frac{3}{5}$ ounce to paint the sky, and some to paint a flag. After that, she had $\frac{2}{15}$ ounce left. How much paint did Shelby use to paint her flag?

Jim sold $\frac{3}{4}$ gallon of lemonade. David sold some lemonade, too. Together, they sold $1\frac{5}{12}$ gallons. Who sold more lemonade, Jim or David? How much more?

Leonard spent $\frac{1}{4}$ of his money on a sandwich. He spent 2 times as much on a gift for his brother as on some comic books. He had $\frac{3}{8}$ of his money left. What fraction of his

money did he spend on the comic books?

Problem Set

Ribbon A is $\frac{1}{3}$ m long. It is $\frac{2}{5}$ m shorter than Ribbon B. What's the total length of the two ribbons?

Application Problem:

Sam had $1\frac{1}{2}$ m of rope. He cut off $\frac{5}{8}$ m and used it for a project. How much rope does Sam have left?

Exit Ticket

Mr. Parson mowed $\frac{2}{7}$ of his lawn. His son mowed $\frac{1}{4}$ of it. Who mowed the most? How much of the lawn still needs to be mowed?

Name:	Week 17 Da	y 4 Date:	
BCCS-Boys	Stanford	MIT	
<u>Do Now</u>			

$\frac{2}{3}+\frac{2}{5}$

1		2
T	Т	3

.

Input Activity:

Problem 1

Adding fractions with whole numbers.

- Change the mixed number to an improper fraction and whole number to a fraction over itself.
- 10. Find LCM if fractions have different denominators.
- 11.Add wholes first, then fractions next.
- 12. Simplify whenever necessary.

Let's solve with the following model:

Adding mixed numbers with whole numbers

$$2\frac{3}{10}+3$$

Problem 3

Adding mixed numbers

Adding fractions

Problem 5

Adding fractions with whole numbers

$$3+1\frac{2}{3}$$

Adding mixed numbers

$$5\frac{2}{5}+2\frac{3}{5}$$

Problem 7

Adding mixed numbers

Application Problem:

Jackie brought $\frac{3}{4}$ of a gallon of iced tea to the party. Bill brought $\frac{7}{8}$ of a gallon of iced tea to the same party. How much iced tea did Jackie and Bill bring to the party?

Exit Ticket

Add.

$$5 + 1\frac{7}{8}$$
 $3\frac{1}{2} + 2\frac{1}{4}$

$$7\frac{3}{8} + 4\frac{1}{2}$$

 $4 + 2\frac{4}{5}$

Name:	Week 17 Day 5 Date:
BCCS-Boys	Stanford MIT

<u>Do Now</u>

$$2\frac{3}{10}+\frac{2}{5}$$

$$1 - \frac{8}{9}$$

Input Activity:

Problem 1

13.	If you have a whole	
number greater than 1,		
take one whole and		
change that to a fraction		
over itself with the		
wh	ole number next to it.	
14.	Change the mixed	
number to an improper		
fra	ction.	
15.	Subtract the	
numerators and write		
your answer over the		
ori	ginal denominator.	
16.	Simplify whenever	
nec	essary.	

Model:

 $2-\frac{1}{2}$

Subtracting fractions with mixed numbers.

Problem 3

Subtracting fractions with mixed numbers.

$$2-1\frac{3}{8}$$

Problem 5

$$4-2\frac{2}{7}$$

Subtracting fractions with mixed numbers.

$$7-5\frac{2}{3}$$

Problem 7

Application Problem:

The total length of two ribbons is 10 meters. If one ribbon is $7\frac{5}{8}$ meters long, what is the length of the other ribbon?

Exit Ticket

Subtract

$$3-1\frac{3}{4}$$
 $4-2\frac{3}{7}$

