Name
Brighter Choice Charter School for Boys

## $5^{\text {th }}$ Grade Math Remote Learning Packet

## Week 16



Dear Educator,
My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.


Name: Week 16 Day 1 Date: $\qquad$
BCCS-Boys Stanford MIT

## Do Now

Find the number that makes an equivalent fraction.

| $\frac{7}{9}=\frac{49}{2}$ | $\frac{2}{8}=\frac{}{24}$ |
| :---: | :---: |
| $\frac{8}{9}=\frac{4}{54}$ | $\frac{4}{5}=\frac{32}{}$ |

## Input Activity:

## Problem 1:

## 1 third + 1 third =

Draw a number line and split it into thirds.


On the number line, show how to add each $\frac{1}{3}$ with arrows designating lengths.

Express this as an addition sentence and a multiplication equation and solve.

Addition Sentence

Multiplication Equation

## Problem 2:

1 fourth + 1 fourth +1 fourth $=$
Draw a number line and split it into fourths.


On the number line, show how to add each $\frac{1}{4}$ with arrows designating lengths.

Express this as an addition sentence and a multiplication equation and solve.

Addition Sentence

## Multiplication Equation

## Problem 3

$$
3 \text { eighths + } 3 \text { eighths + } 1 \text { eighth = }
$$

Draw a number line and split it into eighths.


On the number line, show how to add each $\frac{3}{8}$ and $\frac{1}{8}$ with arrows designating lengths.

Express this as an addition sentence and a multiplication equation and solve.

Addition Sentence

## Multiplication Equation

$$
\begin{array}{r}
\text { Problem 4 } \\
\frac{2}{2}+\frac{2}{2}+\frac{2}{2}=
\end{array}
$$

Draw a number line and split it into halves. Label it from 0 halves to 6 halves.


On the number line, show how to add each $\frac{2}{2}$ with arrows designating lengths.

Express this as a different equation and solve. Equation

Change your improper fraction to a mixed number.

$$
\begin{aligned}
& \text { Problem 5 } \\
& \frac{5}{5}+\frac{3}{5}=
\end{aligned}
$$

Draw a number line and split it into fifths. Mark the endpoints 0 fifths and 10 fifths. Find the halfway point and label it $\frac{5}{5}$ on the bottom. Fill in the rest from $\frac{0}{5}$ to $\frac{10}{5}$. Record the whole number equivalents above the number line.


On the number line, show the sum of $\frac{5}{5}$ and $\frac{3}{5}$ with arrows designating lengths.

Solve then change your improper fraction to mixed number.

## Problem 6

$$
\frac{6}{3}+\frac{1}{3}
$$

Draw a number line mark the endpoints 0 thirds and 9 thirds. Fill in the rest from $\frac{0}{3}$ to $\frac{9}{3}$. Record the whole number equivalents above the number line.


On the number line, show the sum of $\frac{6}{3}$ and $\frac{1}{3}$ with arrows designating lengths.

Solve then change your improper fraction to a mixed number.

## Problem 7:

Express each fraction as the sum of two or three equal fractional parts two different ways.

10
4

## Problem 8:

Express each fraction as the sum of two or three equal fractional parts two different ways.
$\frac{8}{3}$

## Problem Set:

Show each expression on a number line. Solve

1. $\frac{2}{5}+\frac{1}{5}$

2. $\frac{3}{10}+\frac{3}{10}+\frac{3}{10}$

3. $\frac{1}{3}+\frac{1}{3}+\frac{1}{3}$

4. $2 x \frac{3}{4}+\frac{1}{4}$


Express each fraction as the sum of two or three equal fractional parts.
5. $\frac{6}{7}=$
6. $\frac{9}{2}=$

## Application Problem:

Marisela cut four equivalent lengths of ribbon. Each was 3 fourths of a yard long. How many yards of ribbon did she cut? Draw a number line to represent the problem.


## Exit Ticket

Show each expression on a number line. Solve.

b. $\frac{4}{3}+\frac{2}{3}$


Express each fraction as the sum of two or three equal fractional parts.
c. $\frac{10}{9}=$ $\qquad$
d. $\frac{15}{4}=$ $\qquad$


Name: $\qquad$
BCCS-Boys Week 16 Day 2 Date: $\qquad$ Stanford MIT

## Do Now

## Show each expression on a number line. Solve.

a. $\frac{2}{5}+\frac{2}{5}$

b. $\frac{1}{3}+\frac{2}{3}$


## Review:

Change the mixed number to an improper fraction:
$6 \frac{7}{8}$
$5 \frac{2}{3}$

Change the improper fraction to a mixed number:
$\frac{13}{5}$
$\frac{29}{3}$

## Input Activity:

Divisibility Rules - when $\qquad$ can be $\qquad$ easily by other

## Rules for:

2: if the last number is an $\qquad$ number (it ends in $\qquad$ __), it is divisible by 2 .

Ex: $\qquad$

5: if the last number ends in a $\qquad$ or $\qquad$ , it is divisible by 5 . Ex: $\qquad$

10: if the last number ends in a $\qquad$ , it is divisible by 5.

Ex: $\qquad$

3: if the $\qquad$ of the digits is a $\qquad$ of 3 , it is divisible by 3 .

Ex: $\qquad$

9: if the $\qquad$ of the digits is a $\qquad$ of 9 , it is divisible by 9 .

Ex: $\qquad$

## Problem 1

## 672 <br> $\begin{array}{lllll}2 & 5 & 10 & 3 & 9\end{array}$

## Problem 2

$\begin{array}{llllll}5,430 & 2 & 5 & 10 & 3 & 9\end{array}$

## Problem 3

$\begin{array}{llllll}1,265 & 2 & 5 & 10 & 3 & 9\end{array}$

## Problem 4

## 4,582 <br> $\begin{array}{lllll}2 & 5 & 10 & 3 & 9\end{array}$

## Problem 5

## 12,910 <br> $\begin{array}{lllll}2 & 5 & 10 & 3 & 9\end{array}$

$\begin{array}{llllll}21,451 & 2 & 5 & 10 & 3 & 9\end{array}$

Prime Numbers - numbers that have only $\qquad$ factors, $\qquad$ and
$\qquad$

Composite Numbers - numbers that more than $\qquad$ factors

Eratosthenes Sieve

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

Prime Numbers: $\qquad$

## Problem Set

Test the divisibility for the following numbers:

| 4,893 | 2 | 5 | 10 | 3 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllll}17,370 & 2 & 5 & 10 & 3 & 9\end{array}$
10,951
$\begin{array}{lllll}2 & 5 & 10 & 3 & 9\end{array}$

Determine whether the following numbers are prime or composite. Circle P or C.
67 P
C
28
P
C
$99 \quad \mathrm{P} \quad \mathrm{C}$
35 P C

## Exit Ticket

Test the divisibility for the following numbers:

| 27,313 | 2 | 5 | 10 | 3 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- |


| 90,852 | 2 | 5 | 10 | 3 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Determine whether the following numbers are prime or composite. Circle P or C.
39

55 P C
71 P C
$47 \quad P \quad C$


Name: $\qquad$ Week 16 Day 3 Date:

BCCS-Boys Stanford MIT

## Do Now

Create an equivalent fraction to the follow fractions:

1. $\frac{3}{5}=$
2. $\frac{5}{7}=$
3. $\frac{2}{9}=$

Find the missing numerator or denominator to create equivalent fractions.
4. $\frac{6}{9}=\frac{}{27}$
5. $\frac{8}{5}=\frac{32}{}$
6. $\frac{3}{4}=\overline{28}$

## Key Terms:

Reduce - to make $\qquad$ in $\qquad$ or $\qquad$
Other words that mean the same as reduce:

- Simplify
- Lowest Terms
- Simplest Form

Factor - the $\qquad$ that we $\qquad$

Common Factor - a $\qquad$ that $\qquad$ or more $\qquad$ have in $\qquad$

Greatest Common Factor (GCF) - the $\qquad$ factor that 2 or more $\qquad$ have in $\qquad$

## Finding the GCF of numbers:

10:


14: $\qquad$

CF:
GCF:

1. List the factors of each number.
2. Circle the common factors.
3. The largest common factor is called the GCF.

## Input Activity

## Problem 1

Find the GCF of 12 and 15.
12:


15: $\qquad$

Common Factors $\qquad$
GCF $\qquad$

## Problem 2

Find the GCF of 16 and 18.
16:


18:


Common Factors
GCF
$\qquad$ _

## Problem 3

Find the GCF of 10 and 20.
10:


20:


Common Factors $\qquad$
GCF $\qquad$

## Problem 4

Find the GCF of 30 and 24.
30: $\qquad$
24: $\qquad$

Common Factors $\qquad$
GCF $\qquad$

## Problem 5

## Reduce fractions using GCF:

$\frac{10}{15}$

10:


15:


CF: $\qquad$

GCF: :

Now divide the fraction by your
4. List the factors of each number.
5. Circle the common factors.
6. The largest common factor is called the GCF.
7. Take the GCF and divide the numerator and denominator by it.
8. This is your equivalent fraction in lowest terms (simplest form). GCF.

10
$\overline{15}$

## Problem 6

## Reduce fractions using GCF:

22
$\overline{40}$

22:


40:


CF:

GCF:

Now divide the fraction by your GCF.

22
40

## Problem 7

## Reduce fractions using GCF:

36: $\qquad$
$\qquad$
$\qquad$
12:

CF:

GCF:

Now divide the fraction by your GCF.

## Problem 8

## Reduce fractions using GCF:

35
25

35:


25:


CF:

GCF:

Now divide the fraction by your GCF.

35
$\overline{25}$

## Problem Set:

## Reduce the fraction by finding the GCF first.

18:


28:


CF: $\qquad$ GCF: $\qquad$
Now divide the fraction by your
GCF.
18
$\overline{28}$

15
30
15: $\qquad$
30: $\qquad$
CF: $\qquad$ GCF:


Now divide the fraction by your GCF.
15
$\overline{30}$

## Application Problem

Tony needs to ship 12 comedy DVDs, and 30 musical DVDs. He can pack only one type of DVD in each box and he must pack the same number of DVDs in each box. What is the greatest number of DVDs Tony can pack in each box?

12 $\qquad$

30 $\qquad$

GCF: $\qquad$

Answer: The greatest number of DVD's Tony can pack in each box is $\qquad$ .

## Exit Ticket

## Reduce each fraction by finding the GCF first.

36
30
36: $\qquad$ , $\qquad$
$\qquad$ , $\qquad$
$\qquad$ ,

30: $\qquad$ , $\qquad$
$\qquad$
$\qquad$
$\qquad$

Common Factors: $\qquad$ GCF: $\qquad$

Reduce by the GCF $\frac{36}{30}$

$$
\frac{40}{28}
$$

40:


28: $\qquad$
$\qquad$
$\qquad$

Common Factors: $\qquad$ GCF: $\qquad$

Reduce by the GCF $\frac{40}{28}$


Name: $\qquad$ Week 16 Day 4 Date: $\qquad$
BCCS-Boys Stanford MIT

## Do Now

Reduce fractions using GCF:
32
36

32:


36:


CF:

GCF: —__

Now divide the fraction by your GCF.
$\frac{32}{36}$

## Key Terms:

Multiple- the $\qquad$ we get from $\qquad$ numbers

Common Multiple - the $\qquad$ that $\qquad$ or more $\qquad$ have in

Least Common Multiple (LCM) - the $\qquad$ common $\qquad$ of two or more numbers

## Finding the LCM of numbers:

10:


20: $\qquad$

CM: $\qquad$

LCM: $\qquad$

1. List the first 5 multiples of each number.
2. If they have anything in common after 5 numbers, stop. If they don't have anything in common yet, you must keep your lists going.
3. Circle the common multiple in both numbers. The lowest common multiple is called the LCM.

# Input Activity 

## Problem 1

Find the LCM of 8 and 16.

8:


16:


Common Multiples $\qquad$
LCM $\qquad$

## Problem 2

Find the LCM of 12 and 10.
12: $\qquad$
10:


Common Multiples
LCM
$\qquad$

## Problem 3

Find the LCM of 9 and 6.

9: $\qquad$
6: $\qquad$

Common Multiples: $\qquad$
LCM $\qquad$

## Problem 4

Find the LCM of 3 and 4.

3:


4:


Common Multiples $\qquad$
LCM

## Problem 5

Adding Fractions with unlike denominators using LCM:
$\frac{15}{20}+\frac{4}{5}$

20:

$\qquad$
5: $\qquad$ , ,

1. List the multiples of each denominator.
2. Circle the common multiples.
3. The LCM is now going to be your least common multiple)
4. Create equivalent fractions with your new denominator and old numerator.
5. Now you have 2 fractions with the same denominator.
6. Add
7. Simplify whenever necessary.

## Problem 6

Adding Fractions with unlike denominators using LCM
$\frac{2}{4}+\frac{1}{6}$

4:


6:


LCM:

## Problem 7

## Adding Fractions with unlike denominators using LCM <br> $\frac{3}{12}+\frac{1}{4}$

4: $\qquad$
$\qquad$
12:


LCM:

## Problem 8

## Adding Fractions with unlike denominators using LCM

$\frac{3}{5}+\frac{2}{3}$

5:


3:


LCM:

## Problem Set:

## Adding Fractions with unlike denominators using LCM

$\frac{1}{2}+\frac{5}{8}$
2: $\qquad$

$\qquad$


8: $\qquad$ ——, $\qquad$


LCM: $\qquad$
Now change each fraction to its equivalent fraction and add.
$\frac{3}{10}+\frac{2}{5}$
10:


5: $\qquad$ -_ , _

LCM: $\qquad$
Now change each fraction to its equivalent fraction and add.

## Application Problem:

Cups are sold 5 to a package and plates are sold 10 to a package. If you want to have the same number of each item for a party, what is the least number of packages of each you need to buy?

5: $\qquad$

10: $\qquad$

LCM: $\qquad$

Answer: The least amount of each package you need is packages of cups and $\qquad$ packages of plates.

## Exit Ticket

## Add Fractions with unlike denominators using LCM



7:


5: $\qquad$
$\qquad$
LM: $\qquad$


8: $\qquad$
4: $\qquad$
LCM: $\qquad$


Name: $\qquad$ Week 16 Day 5 Date: $\qquad$
BCCS-Boys
Stanford MIT

## Do Now

Find the LCM of 3 and 9.

3:


9: $\qquad$

LCM: $\qquad$

Find the LCM of 20 and 30.
20:


30: $\qquad$


LCM:

## Input Activity:

## Problem 1

## Adding Fractions with unlike denominators using LCM:

$\frac{1}{3}+\frac{1}{4}$

3:


4:


LCM: $\qquad$

1. $\qquad$ the
$\qquad$ of each
$\qquad$ .
2. $\qquad$ the
$\qquad$ multiples.
3. The $\qquad$ is now going to be your least common
$\qquad$ -.
4. Create $\qquad$
fractions with your new
$\qquad$ and old
$\qquad$ .
5. Now you have 2
$\qquad$ with the denominator.
6. $\qquad$
7. $\qquad$ whenever
$\qquad$ -

## Problem 2

Adding Fractions with unlike denominators using LCM
$\frac{1}{2}+\frac{3}{4}$

2:


4:


LCM:

## Problem 3

## Adding Fractions with unlike denominators using LCM

$\frac{4}{5}+\frac{1}{2}$

5:


2:


LCM:

## Problem 4

## Adding Fractions with unlike denominators using LCM

$\frac{2}{3}+\frac{3}{5}$


5:


LCM:

## Problem 5

## Adding Fractions with unlike denominators using LCM

$\frac{3}{8}+\frac{2}{3}$


LCM:

## Problem Set:

## Adding Fractions with unlike denominators using LCM

$\frac{2}{3}+\frac{1}{2}$
3: $\qquad$

$\qquad$
2: $\qquad$ , , $\qquad$


LCM: $\qquad$
Now change each fraction to its equivalent fraction and add.
$\frac{3}{4}+\frac{2}{3}$

4: $\qquad$
$\qquad$
$\qquad$
3: $\qquad$ ——, $\qquad$
$\qquad$
LCM: $\qquad$
Now change each fraction to its equivalent fraction and add.

## Application Problem:

Penny used $\frac{2}{5} \mathrm{lb}$ of flour to bake a vanilla cake. She used another $\frac{3}{4} \mathrm{lb}$ of flour to bake a chocolate cake. How much flour did she use altogether?

C

U

B

E

S
Answer Statement

## Exit Ticket

## Add Fractions with unlike denominators using LCM

1. $\frac{1}{2}+\frac{3}{5}$

2: $\qquad$
$\qquad$
$\qquad$ ,


5: $\qquad$


LCM: $\qquad$
2. $\frac{5}{7}+\frac{1}{2}$

7: $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
2: $\qquad$
$\qquad$
$\qquad$


LCM: $\qquad$

Name
Brighter Choice
Charter School for Boys

## $5^{\text {th }}$ Grade Math Remote Learning Packet

## Week 17



Dear Educator,
My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.


Name: $\qquad$ Week 17 Day 1 Date: $\qquad$

## Do Now

Sam made $\frac{2}{3}$ liter of punch and $\frac{3}{4}$ liter of tea to take to a party. How many liters of beverages did Sam bring to the party?

C
U

B

E

S
Answer Statement $\qquad$
$\frac{2}{3}+\frac{5}{6}$
3: $\qquad$
6: $\qquad$
LCM:

## Input Activity

## Problem 1

## Subtracting fractions with unlike denominators using LCM:

$\frac{1}{2}-\frac{1}{3}$

2:


3: $\qquad$

LCM: $\qquad$

1. List the multiples of each denominator.
2. Circle the common multiples.
3. The LCM is now going to be your least common multiple)
4. Create equivalent fractions with your new denominator and old numerator.
5. Now you have 2 fractions with the same denominator.
6. Subtract.
7. Simplify whenever necessary.

## Problem 2

Subtracting Fractions with unlike denominators using LCM
$\frac{4}{5}-\frac{2}{3}$

5:


3:


## LCM:

Now change each fraction to its equivalent fraction and subtract.

## Problem 3

Subtracting Fractions with unlike denominators using LCM
$\frac{1}{7}-\frac{1}{14}$


14:


## LCM:

Now change each fraction to its equivalent fraction and subtract.

## Problem 4

Subtracting Fractions with unlike denominators using LCM
$\frac{2}{3}-\frac{2}{4}$

3:


4:


LCM:
Now change each fraction to its equivalent fraction and subtract.

## Problem 5

Subtracting Fractions with unlike denominators using LCM
$\frac{2}{3}-\frac{1}{6}$

3:


6: ___ ,,

## LCM:

Now change each fraction to its equivalent fraction and subtract.

## Problem 6

Subtracting Fractions with unlike denominators using LCM
$\frac{3}{10}-\frac{4}{20}$

10:


20:


## LCM:

Now change each fraction to its equivalent fraction and subtract.

## Problem 7

Subtracting Fractions with unlike denominators using LCM
$\frac{1}{3}-\frac{1}{4}$

3:


4:


LCM:

Now change each fraction to its equivalent fraction and subtract.

## Problem Set:

Subtracting Fractions with unlike denominators using

## LCM

$\frac{1}{2}-\frac{2}{8}$
2: $\qquad$
$\qquad$
$\qquad$
$\qquad$
8: $\qquad$
$\qquad$
$\qquad$


LCM: $\qquad$
Now change each fraction to its equivalent fraction and subtract.
$\frac{5}{6}-\frac{1}{4}$
6: $\qquad$
$\qquad$
$\qquad$ ,

4: $\qquad$ , __,


LCM: $\qquad$
Now change each fraction to its equivalent fraction and subtract.

## Application Problem:

A farmer uses $\frac{3}{4}$ of his field to plant corn, $\frac{1}{6}$ of his field to plant beans, and the rest to plant wheat. What fraction of his field is used for wheat?

## Exit Ticket

## Subtract fractions with unlike denominators using LCM.

$$
\frac{1}{2}-\frac{5}{12}
$$

4: $\qquad$
8: $\qquad$
$\qquad$


LCM: $\qquad$

$$
\frac{3}{4}-\frac{2}{7}
$$

4: $\qquad$
7: $\qquad$

LCM: $\qquad$


Name: $\qquad$ Week 17 Day 2 Date: $\qquad$
BCCS-Boys
Stanford MIT

## Do Now:

$\frac{2}{3}-\frac{2}{5}$
3: ____ , _ ,

5: $\qquad$

LCM:
$\frac{5}{7}-\frac{2}{3}$
7:


3:


LCM:

# Input Activity: 

## Problem 1

## Subtracting fractions with unlike denominators using LCM:

$1 \frac{1}{3}-\frac{1}{2}$

2: $\qquad$ ,


3: $\qquad$
$\qquad$ ,

LCM: $\qquad$

1. Change the mixed number to an improper fraction.
2. List the multiples of each denominator.
3. Circle the common multiples.
4. The LCM is now going to be your least common multiple)
5. Create equivalent fractions with your new denominator and old numerator.
6. Now you have 2 fractions with the same denominator.
7. Subtract.
8. Simplify whenever necessary.

## Problem 2

Subtracting Fractions with unlike denominators.
$1-\frac{1}{3}$

## Problem 3

Subtracting Fractions with unlike denominators.
$1-\frac{2}{7}$

## Problem 4

Subtracting Fractions with unlike denominators using LCM
$1 \frac{1}{2}-\frac{2}{3}$


LCM:

## Problem 5

Subtracting Fractions with unlike denominators using LCM
$1 \frac{3}{4}-\frac{4}{5}$

4: $\qquad$

5: $\qquad$

LCM:

## Problem 6

Subtracting Fractions with unlike denominators using LCM
$1 \frac{4}{9}-\frac{1}{2}$

9: $\qquad$
2:


LCM:

## Problem 7

Subtracting Fractions with unlike denominators.
$1-\frac{4}{5}$

## Problem 8

Subtracting Fractions with unlike denominators.
$1-\frac{3}{8}$

## Problem 9

Subtracting Fractions with unlike denominators using LCM
$1 \frac{1}{4}-\frac{1}{3}$

4: $\qquad$
3: $\qquad$

LCM:

## Problem 10

Subtracting Fractions with unlike denominators using LCM
$1 \frac{1}{5}-\frac{1}{3}$

5: $\qquad$
3: $\qquad$

LCM:

## Problem Set:

Subtracting Fractions with unlike denominators using

## LCM

$1 \frac{3}{8}-\frac{1}{2}$
8: $\qquad$

$\qquad$
$\qquad$
2: $\qquad$
$\qquad$ _

LCM: $\qquad$
Now change each fraction to its equivalent fraction and subtract.
$1 \frac{2}{5}-\frac{1}{2}$
5: $\qquad$ , _ـ, $\qquad$ ,

2: $\qquad$
$\qquad$
$\qquad$ _

LCM: $\qquad$
Now change each fraction to its equivalent fraction and subtract.

## Application Problem:

The Napoli family had two bags of dry cat food. The yellow bag had $3 \frac{5}{6} \mathrm{~kg}$ of cat food. The red bag had $\frac{3}{4} \mathrm{~kg}$. How much more cat food did the yellow bag have than the red bag?

C

U

B

E

S

Answer Statement

## Exit Ticket

## Subtract fractions with unlike denominators using LCM.

$$
1 \frac{2}{7}-\frac{1}{3}
$$

7: $\qquad$
$\qquad$
$\qquad$
$\qquad$
3: $\qquad$


LCM: $\qquad$
$1-\frac{3}{5}$



## LCM:

$\frac{9}{7}-\frac{3}{4}$
7:

$\qquad$
4:


LCM:

## Input Activity:

## Problem 1

Auggie weeded $\frac{1}{5}$ of the garden, and Summer weeded some, too. When they were finished, $\frac{2}{3}$ of the garden still needed to be weeded. What fraction of the garden did Summer weed?
$\qquad$

## Problem 2

Kayla spent $\frac{1}{3}$ of her money on a pack of pens, $\frac{1}{2}$ of her money on a pack of markers, and $\frac{1}{8}$ of her money on a pack of pencils. What fraction of her money is left?
$\qquad$

## Problem 3

Shelby bought a 2-ounce tube of blue paint. She used $\frac{2}{3}$ ounce to paint the water, $\frac{3}{5}$ ounce to paint the sky, and some to paint a flag. After that, she had $\frac{2}{15}$ ounce left. How much paint did Shelby use to paint her flag?
$\qquad$

## Problem 4

Jim sold $\frac{3}{4}$ gallon of lemonade. David sold some
lemonade, too. Together, they sold $1 \frac{5}{12}$ gallons. Who sold more lemonade, Jim or David? How much more?
$\qquad$

## Problem 5

Leonard spent $\frac{1}{4}$ of his money on a sandwich. He spent 2 times as much on a gift for his brother as on some comic books. He had $\frac{3}{8}$ of his money left. What fraction of his money did he spend on the comic books?
$\qquad$

## Problem Set

Ribbon $A$ is $\frac{1}{3} \mathrm{~m}$ long. It is $\frac{2}{5} \mathrm{~m}$ shorter than Ribbon $B$. What's the total length of the two ribbons?

## Application Problem:

Sam had $1 \frac{1}{2} \mathrm{~m}$ of rope. He cut off $\frac{5}{8} \mathrm{~m}$ and used it for a project. How much rope does Sam have left?

Answer: $\qquad$

## Exit Ticket

Mr. Parson mowed $\frac{2}{7}$ of his lawn. His son mowed $\frac{1}{4}$ of it. Who mowed the most? How much of the lawn still needs to be mowed?
$\qquad$


Name:
Week 17 Day 4 Date: $\qquad$
BCCS-Boys
Stanford MIT

## Do Now

$\frac{2}{3}+\frac{2}{5}$
$1+\frac{2}{3}$

## Input Activity:

## Problem 1

## Adding fractions with whole numbers.

$1+1 \frac{3}{4}$
9. Change the mixed number to an improper fraction and whole number to a fraction over itself.
10. Find LCM if fractions have different denominators.
11. Add wholes first, then fractions next.
12. Simplify whenever necessary.

Let's solve with the following model:


## Problem 2

Adding mixed numbers with whole numbers
$2 \frac{3}{10}+3$

## Problem 3

## Adding mixed numbers

$1 \frac{1}{2}+2 \frac{2}{3}$

# Problem 4 <br> <br> Adding fractions 

 <br> <br> Adding fractions}
$\frac{2}{3}+\frac{1}{4}+\frac{1}{2}$

## Problem 5

## Adding fractions with whole numbers

$3+1 \frac{2}{3}$

## Problem 6

## Adding mixed numbers

$5 \frac{2}{5}+2 \frac{3}{5}$

## Problem 7

## Adding mixed numbers

$\frac{3}{4}+1 \frac{1}{10}$

## Problem Set:

Add.
$2+1 \frac{1}{5}$
$\frac{2}{5}+\frac{1}{4}+\frac{1}{10}$
$4+1 \frac{3}{8}$

## Application Problem:

Jackie brought $\frac{3}{4}$ of a gallon of iced tea to the party. Bill brought $\frac{7}{8}$ of a gallon of iced tea to the same party. How much iced tea did Jackie and Bill bring to the party?

Answer: $\qquad$

## Exit Ticket

Add.
$5+1 \frac{7}{8}$
$3 \frac{1}{2}+2 \frac{1}{4}$
$7 \frac{3}{8}+4 \frac{1}{2}$
$4+2 \frac{4}{5}$


Name: $\qquad$ Week 17 Day 5 Date: $\qquad$
BCCS-Boys
Stanford MIT

## Do Now

$2 \frac{3}{10}+\frac{2}{5}$
$1-\frac{8}{9}$

## Input Activity:

## Problem 1

Subtracting fractions with mixed numbers.
$2-\frac{1}{2}$
13. If you have a whole number greater than 1, take one whole and change that to a fraction over itself with the whole number next to it.
14. Change the mixed number to an improper fraction.
15. Subtract the numerators and write your answer over the original denominator.
16. Simplify whenever necessary.

## Problem 2

Subtracting fractions with mixed numbers.
$2-\frac{3}{5}$

## Problem 3

Subtracting fractions with mixed numbers.
$3-1 \frac{2}{3}$

## Problem 4

Subtracting fractions with mixed numbers.
$2-1 \frac{3}{8}$

## Problem 5

Subtracting fractions with mixed numbers.
$4-2 \frac{2}{7}$

## Problem 6

Subtracting fractions with mixed numbers.
$7-5 \frac{2}{3}$

## Problem 7

Subtracting fractions with mixed numbers.
$1-\frac{1}{10}$

## Problem Set:

## Subtract

| $2-\frac{1}{5}$ | $6-\frac{5}{8}$ |
| :--- | :--- |
| $4-1 \frac{3}{8}$ | $2-1 \frac{1}{4}$ |
| $3-1 \frac{2}{5}$ | $5-\frac{3}{4}$ |

## Application Problem:

The total length of two ribbons is 10 meters. If one ribbon is $7 \frac{5}{8}$ meters long, what is the length of the other ribbon?

## Exit Ticket

Subtract

$$
3-1 \frac{3}{4} \quad 4-2 \frac{3}{7}
$$

$$
7-2 \frac{1}{3}
$$

$$
4-1 \frac{4}{5}
$$

