\qquad

Howard University

4th Grade Math
Remote Learning Packet
December 7-11, 2020

Module 3, Lesson 14

Learning Target: I can solve division word problems with remainders.

Input
Divide a two-digit number by a one-digit number modeled with an array.

1. There are $\mathbf{1 2}$ students in PE class separated into $\mathbf{4}$ teams. How many students are on each team?

What is a division expression that matches the situation? \qquad . What is the quotient? The quotient is \qquad . How many students are on each team? There are \qquad students on each team. How can you check to make sure your division was correct? I can count by \qquad four times to get 12, or I can multiply \qquad times \qquad to get 12. Does this quotient tell us the size of the group or the number of groups? It tells us the \qquad of the groups. Let's try revising the story: There are 12 students in PE class but now 3 students are needed on each team. How many teams can be made?
\qquad teams. What is the division expression for the new story? \qquad . Does the quotient tell us the size of the group or the number of groups? It tells us the \qquad of groups. The same array can represent a situation with the group size unknown or the number of groups unknown.

Divide a two-digit number by a one-digit number with a remainder modeled with an array.
2. One more student joined the class described at the beginning of Problem 1. There are now 13 students to be divided into 4 teams. I can represent \qquad in \qquad groups. Four groups of \qquad make 12, but I have one left over. One student won't be on a team. What is an expression to represent this problem? \qquad . When we divide a number into equal groups sometimes there is an amount leftover. We call that number that we have left a remainder. What is the quotient in this division problem? The quotient is \qquad .What is the remainder? \qquad . We state our answer by saying the quotient and then the remainder. The quotient is \qquad . The remainder is \qquad . We can also say, or write, "the quotient is 3 with a remainder of 1." How can " we check our answer using multiplication? What if there are 13 students in PE class and three students are needed on each team. How many teams can be made? What is the new expression? The new expression is $13 \div 3$ and the quotient is \qquad and the remainder is \qquad . What do the quotient and the remainder mean in this second story? \qquad teams can be made and there is
\qquad extra person.

Divide a two-digit number with a remainder modeled with a tape diagram.
3. Kristy bought $\mathbf{1 3}$ roses. If she puts $\mathbf{6}$ roses in each vase, how many vases will she use? Will there be any roses left over?

Divide a two-digit number by a one-digit number, interpreting the remainder.
4. Allison has $\mathbf{2 2}$ meters of fabric to sew dresses. She uses $\mathbf{3}$ meters of fabric for each dress. After how many dresses will Allison need to buy more fabric?

CFU:

1. If it takes 8 inches of ribbon to make a bow, how many bows can be made from $\mathbf{3}$ feet of ribbon? ($\mathbf{1}$ foot = $\mathbf{1 2}$ inches)? Will any ribbon be left over? If so, how much?
2. The baker has $\mathbf{4 2}$ kilograms of flour. She uses 8 kilograms each day. After how many days will she need to buy more flour?
\qquad

Module 3, Lesson 15

Learning Target: I can understand and solve division problems with a remainder using the array and area models.

Input
Solve a division problem with and without a remainder using the area model.

1. Draw an array to represent $10 \div 2$.

Label your rectangle with an area of 10 square units and a width of $\mathbf{2}$ units. How can we find the length of the unknown side?

2. Draw a rectangular area model to represent $11 \div 2$
3. Draw a rectangular area model to represent $16 \div 3$
4. Draw a rectangular area model to represent $23 \div 4$

CFU:

1. Solve using an array and an area model: $29 \div 3$

Module 3, Lesson 16

Learning Target: I can solve understand and solve two-digit dividend division problems with a remainder in the ones place by using number disks.

Input

1. $6 \div 3$

What does 6 ones represent? It represents the \qquad or the \qquad . It is what we are dividing. What is the number we are dividing by? We are dividing by \qquad . Let's assume it is telling us how many groups to make, and draw 3 groups below. Can we distribute 6 ones into 3 groups? We can think of it like dealing cards evenly among 3 players. First, you put one in each group. Cross off the ones one at a time as you distribute them evenly. Next, put another one in each group if you are able and continue this until all of the ones are distributed. How many can we put in each group? We can put \qquad in each group. Are there any ones left over? \qquad , there are not. How many ones are in each of our $\mathbf{3}$ groups? Write a number sentence that shows the division problem we just solved:
. Let's represent $6 \div 3$ in a new way. Let's record
the whole and the divisor. 6 ones divided by 3 ones is \qquad ones. Is there a remainder? \qquad , we divided 6 ones and have no ones remaining
2. $36 \div 3$

3 tens and 6 ones represent the \qquad . Show 36 using number disks. What is the number that we are dividing by? \qquad . Make room for $\mathbf{3}$ groups below. Let's start dividing with the largest units. What is the largest unit? The \qquad . 3 tens divided by 3 is \qquad ten. Distribute the 3 tens and cross them off to show they are now divided equally into the $\mathbf{3}$ groups. Are there any tens left over?
\qquad . 6 ones divided by $\mathbf{3}$ is \qquad ones. Distribute the ones evenly, one at a time, into each group. Cross off the ones as you distribute them. Are there any ones left over? \qquad . What is $36 \div 3$? It is \qquad .
3. 5 ones $\div 4$

Watch as I draw my place value chart. Now, do the same, and represent the whole and the divisor on your chart. 5 ones divided by 4 equals? It does \qquad divide evenly. I can place \qquad in each group, but I will have \qquad left over.
4. $45 \div 4$
5. $68 \div 3$

CFU (Submit in Chat Box):

1. $8 \div 3$

Name: \qquad
BCCSG

December 10, 2020
Howard

Module 3, Lesson 17

Learning Target: I can represent and solve division problems requiring decomposing a remainder in the tens.

Input
Divide two-digit numbers by one-digit numbers using number disks, regrouping in the tens.

1. Draw your place value chart to represent $\mathbf{3 \div 2}$
2. $30 \div 2$
3. 4 ones $\div 3$
4. $42 \div 3$
5. $84 \div 3$

CFU (Submit in Chat Box):

1. $50 \div 2$

Module 3, Lesson 18

Learning Target: I can find whole number quotients and remainders.

Input
Divide a two-digit number by a one-digit divisor with a remainder in the tens place.

1. $\mathbf{5}$ tens $\mathbf{7}$ ones $\div \mathbf{3}$

Let's divide 57 into \qquad equal groups. Let's divide 5 tens first. Why would we divide the tens first? Because when we divide, we always start with the \qquad units. We divide the tens first because we may have to change \qquad for ones. 5 tens divided by 3 is \qquad ten in each group with tens remaining. How do we divide the remaining two tens? WE can unbundle 2 tens as \qquad ones. Now how many ones do we have altogether? We have \qquad ones. You know your threes facts! What is 27 ones divided by $\mathbf{3}$? It is \qquad ones.
2. $\mathbf{8}$ tens $\mathbf{6}$ ones $\div 5$

We solved 57 divided by 3 by unbundling, so let's try another example! How many groups are we dividing 86 into? \qquad groups. We start with the tens. Divide 8 tens into 5 groups. That is \qquad ten in each group and \qquad tens remaining. What will we do with the remaining tens? We can unbundle them as ones. 3 tens unbundles as \qquad ones. How many ones do we have altogether?
\qquad ones. Now, divide 36 ones into 5 groups. That's \qquad in each group with \qquad remaining.
3. 7 tens 4 ones $\div 8$

What is tricky about this problem? You can't divide 7 tens into 8 groups! What will we do to solve this? Think of your eights facts. I'm thinking of an eights fact whose product is close to 74. Can you think of what it is? $\mathbf{8 x}$ \qquad $=72$. How can we say this as a division equation? 74 divided by 8 equals \qquad with a remainder of \qquad -

CFU (Submit in Chat Box):

1. $95 \div 4$
