Name

$3^{\text {rd }}$ Grade Modified Math Remote Learning Packet Week 18

Dear Educator,
My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

(Parent Signature)

> Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

LEQ: How can I multiply by multiples of 10 ?

Objective: I can use a place value chart to multiply by multiples of 10 .

Name: \qquad BCCS-B

Week 18 Day 2 Date: \qquad Harvard Yale Princeton

Do Now:

Multiplication Caterpillar

Dot-to-Dot

Count by 10s. Connect the dots

Name: \qquad
BCCS-B

Input (My Turn):

When multiplying by tens, we can use a \qquad
\qquad chart and an array, where each unit represents one 1. To multiply that product by ten, each single unit will change from \qquad to \qquad .

Tens	Ones
$10 \rightarrow 10$	2×3 ones $=\frac{6}{6}$ ones
10	$2 \times 3=6$
2×3 tens $=60$ tens	
$2 \times 30=60$	10

1. Use the disks to fill in the blanks in the equations.

b.

4×5 ones $=$ \qquad ones

$$
4 \times 5=
$$

4×5 tens $=$ \qquad
\qquad
$4 \times 50=$ tens

Name: \qquad
BCCS-B

© Problem Set (Your Turn):

1. Use the disks to fill in the blanks in the equations.
b.

$$
\begin{aligned}
6 \times 3 \text { ones } & =\frac{18}{} \text { ones } \\
6 \times 3 & =18
\end{aligned}
$$

6×3 tens $=\ldots$ tens

$$
6 \times 30=
$$

[^0]Week 18 Day 2 Date: \qquad

Name: \qquad
BCCS-B

Week 18 Day 2 Date:
Harvard
Yale
\qquad

Input (My Turn):

1. Use the chart to complete the blanks in the equations.

a. 2×4 ones $=$ \qquad

$$
2 \times 4=
$$ ones

b. 2×4 tens $=$ \qquad tens

$$
2 \times 40=
$$

\qquad

Fill in the blank to make the equation true.

a. $14=7 \times 2$	\qquad tens $=7$ tens $\times 2$
b. $\quad=8 \times 3$	_ tens $=8$ tens $\times 3$
c. $=60 \times 5$	$\underline{=} 4 \times 80$
d. $7 \times 40=$	$50 \times 8=$

Name: \qquad
BCCS-B

Week 18 Day 2 Date: \qquad Harvard

Yale

Problem Set (Your Turn):

2. Use the chart to complete the blanks in the equations.

tens	ones
$\bullet \bullet \bullet \bullet$	
$\bullet \bullet \bullet \bullet$	
$\bullet \bullet \bullet \bullet$	
$\bullet \bullet \bullet$	

b. 4×4 ones $=$ \qquad ones

$$
\mathbf{4 \times 4}=\underline{16}
$$

b. 4×4 tens $=$ \qquad tens

$$
4 \times 40=
$$

tens	ones
- - - -	
- - - -	
$\cdots \bullet \bullet \bullet$	
-6.	
$6 \cdot 6$	

c. 6×5 ones $=$ \qquad ones
d. 6×5 tens $=$ \qquad tens ${ }^{9}$
$6 \times 5=$ \qquad

Name: \qquad BCCS-B
 Week 18 Day 2 Date: \qquad Harvard Yale

Princeton

Application:

A bus can carry 40 passengers. How many passengers can 6 buses carry? Write an equation to show your thinking.

Name: \qquad
BCCS-B

Week 18 Day 2 Date: \qquad Harvard

Yale
Princeton

Exit Ticket:

1. Use the chart to complete the blanks in the equations.

tens		ones	
	\bullet	\bullet	\bullet
	\bullet	\bullet	
	\bullet	\bullet	\bullet
	\bullet	\bullet	\bullet
	\bullet	\bullet	\bullet
	\bullet	\bullet	
	\bullet	\bullet	\bullet
		\bullet	

$$
\begin{aligned}
6 \times 4 \text { ones } & =24 \\
6 \times 4 & =24
\end{aligned}
$$

tens	ones
- - -	
- - -	Count by 10
- - -	
- - -	
- - -	
- - - -	

6×4 tens $=$ \qquad tens
$6 \times 40=$ \qquad
2. Use the disks to complete the blanks in the equations.
a.

Name: \qquad BCCS-B

Week 18 Day 2 Date: \qquad Harvard Yale

Homework:

1. Use the chart to complete the blanks in the equations.

a. 2×5 ones $=$ \qquad ones

$$
\mathbf{2 \times 5}=\quad 10
$$

tens			ones	
\bullet	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	
\bullet	\bullet	\bullet	\bullet	

c. 5×5 ones $=$ \qquad ones
d. 5×5 tens $=$ \qquad tens
b. 2×5 tens $=\ldots$ tens
$2 \times 50=$ \qquad
\qquad

$$
5 \times 5=
$$

\qquad

Name: \qquad
BCCS-B

Week 18 Day 2 Date: \qquad Harvard

Yale

Homework Page 2:

A small plane has 20 rows of seats. Each row has 4 seats. Find the total number of seats on the plane.

LEQ: How can I use the associative property to multiply by tens?

Objective: I can use parentheses to apply the associative property to multiply by tens.

Name: \qquad BCCS-B

Do Now:

Name: \qquad
BCCS-B

Input (My Turn):

When using the associative property to multiply by tens, I can use \qquad
to rearrange expressions. For example, if I want to multiply 3×30, I could rewrite that as $3 \times(3 \times 10)$ or $(3 \times 3) \times 10$ to get a product of \qquad . We simplify the multiple of 10 and create smaller factors.

1. Place parentheses in the equations to find the related fact. Then, solve.

Name: \qquad BCCS-B

Week 18 Day 3 Date: Harvard
\qquad

Problem Set (Your Turn):

1. Place parentheses in the equations to find the related fact. Then, solve.

Name: BCCS-B
\qquad Week 18 Day 3 Date:
Harvard Yale Princeton

Input (My Turn):

1. Place parentheses in the equations to find the related fact. Then, solve.
a. $3 \times 20=3 \times(2 \times 10)$
b. $2 \times 30=2 \times 3 \times 10$
$=(3 \times 2) \times 10$

$$
=2 \times 3 \times 10
$$

$$
={ }^{6} \times 10
$$

$$
=
$$

$$
\begin{aligned}
& =\ldots \quad \times 10 \\
& =
\end{aligned}
$$

2. Nahjaleek solves 20×4 by thinking about 10×8. Explain his strategy.

Name: \qquad BCCS-B Week 18 Day 3 Date: Harvard Yale Princeton

Problem Set (Your Turn):

1. Place parentheses in the equations to find the related fact. Then, solve.
a. $2 \times 20=2 \times(2 \times 10) 20 \times 2=40$
b. $2 \times 50=2 \times 5 \times 10$
\uparrow
40

$$
\begin{aligned}
& =(2 \times 2) \times 10 \\
& =4 \\
& =40
\end{aligned}
$$

$$
=2 \times 5 \times 10
$$

$$
=\quad \ldots \times 10
$$

$$
=
$$

2. Jeremiah solves 20×3 by thinking about 10×6. Explain his strategy.

Name: \qquad BCCS-B
\qquad

Application:

Mrs. Blomgren goes to a bookstore. She buys a class set of 20 books for $\$ 3.00$ each. How much money did Mrs. Blomgren pay in all?

Name: \qquad
BCCS-B

Week 18 Day 3 Date:
Harvard Yale
\qquad

Exit Ticket:

1. Place parentheses in the equations to find the related fact. Then, solve.
a. $4 \times 20=4 \times 2 \times 10$
$=4 \times 2 \times 10$
$=$ \qquad $\times 10$
b. $3 \times 30=3 \times 3 \times 10$
$=3 \times 3 \times 10$
$=\ldots \times 10$
\qquad $=$ \qquad
2. Jacob solves 20×5 by thinking about 10 tens. Explain his strategy.

Name: \qquad
BCCS-B

Week 18 Day 3 Date: \qquad
Harvard
Yale
Princeton

Homework:

1. Solve. Place parentheses in (c) and (d) as needed to find the related fact.

2. Danny solves 5×20 by thinking about 10×10. Explain his strategy.

Danny was thinking that $5 \times 20=$

LEQ: How can I solve two-step word problems involving multiplying single digits by multiples of 10 ?

Objective: I can use CUBES and organize my work space to solve two-step word problems involving multiplying single digits by multiples of 10 .

Name:
BCCS-B

Week 18 Day 4 Date:
Harvard Yale

Do Now: Multiply by Multiples of 10

1.	$4 \times 2=$	8
2.	$4 \times 20=$	
3.	$40 \times 2=$	
4.	$3 \times 3=$	
5.	$3 \times 30=$	
6.	$30 \times 3=$	90
7.	$3 \times 2=$	
8.	$3 \times 20=$	
9.	$30 \times 2=$	
10.	$5 \times 5=$	
11.	$50 \times 5=$	
12.	$5 \times 50=$	
13.	$4 \times 3=$	
14.	$40 \times 3=$	
15.	$4 \times 30=$	
16.	$7 \times 3=$	
17.	$7 \times 30=$	
18.	$70 \times 3=$	
19.	$6 \times 4=$	24
20.	$60 \times 4=$	240
21.	$6 \times 40=$	
22.	$9 \times 4=$	

23.	$9 \times 40=$	
24.	$90 \times 4=$	320
25.	$8 \times 6=$	
26.	$80 \times 6=$	
27.	$5 \times 2=$	
28.	$5 \times 20=$	
29.	$3 \times 80=$	
30.	$40 \times 8=$	
31.	$4 \times 50=$	
32.	$8 \times 80=$	
33.	$90 \times 6=$	
34.	$6 \times 70=$	
35.	$60 \times 6=$	
36.	$7 \times 70=$	
37.	$60 \times 5=$	
38.	$6 \times 80=$	
39.	$7 \times 80=$	
40.	$80 \times 6=$	
41.	$90 \times 7=$	
42.	$8 \times 50=$	
43.	$80 \times 9=$	
44.	$7 \times 90=$	

Name: \qquad BCCS-B

Input (My Turn):

1. There are 60 seconds in 1 minute. Use a tape diagram to find the total number of seconds in 5 minutes and 45 seconds.

2. Ahmed saves $\$ 30$ each month for 4 months. Does he have enough money to buy the art supplies below? Explain why or why not.

Name: \qquad
BCCS-B

Week 18 Day 4 Date: Harvard Yale
\qquad Yale Princeton

Problem Set (Your Turn):

1. There are (0)seconds in 1 minute. Use a tape diagram to find the total number of seconds in minutes and 50 seconds.
\square
2. Prince saves 40 fach month fo 5 months. Does he have enough money to buy the art supplies below? Explain why or why not.

Name: \qquad BCCS-B

Input (My Turn):

3. Zaymir receive 5 cents for each can or bottle he recycles. How many cents does Zaymir earn if he recycles 48 cans and 32 bottles?
4. Mr. Moore buys 3 sets of cards. Each set comes with 18 striped cards and 12 polka dot cards. He uses 49 cards. How many cards does he have left?

Name: \qquad BCCS-B

Week 18 Day 4 Date: Harvard Yale

Problem Set (Your Turn):

3. Caleb receives 5 cents for each can or bottle he recycles. How many cents does Caleb earn if he recycles 28 cans and 22 bottles?
4. Mr. Pierce buys 3 sets of cards. Each set comes with 28 striped cards and 22 polka dot cards. He uses 54 cards. How many cards does he have left?

Name: \qquad BCCS-B
 Week 18 Day 4 Date: \qquad

Harvard Yale

Princeton

Application:

A box of 10 markers weighs 115 grams. If the empty box weighs 15 grams, how much does each marker weigh?

Name: \qquad
BCCS-B

Week 18 Day 4 Date: Harvard Yale
\qquad
Princeton

Exit Ticket:

Xaiden buys a can of 3 tennis balls. The empty can weighs 20 grams, and each tennis ball weighs 60 grams. What is the total weight of the can with 3 tennis balls?

Name: \qquad BCCS-B

Week 18 Day 4 Date:
Harvard Yale
\qquad
Princeton

Homework:

1. Ms. Moise buys 7 boxes of snacks. Each box has 12 packets of fruit snacks and 18 packets of cashews. How many snack packets does she buy altogether?
2. Dayshawn wants to buy a tablet that costs $\$ 437$. He saves $\$ 50$ a month for 9 months. Does he have enough money to buy the tablet? Explain why or why not.

Name: \qquad BCCS-B

Week 18 Day 5 Date: \qquad Harvard

Yale

Princeton

1. Use the $\mathbf{9}$ finger trick to write an equation for the diagram below.

2. Match each equation with its solution.

Name: \qquad BCCS-B

Week 18 Day 5 Date: \qquad Harvard

Yale
Princeton
3. Use the disks to fill in the blanks in the equations.
a.

b.

4×5 ones $=$ \qquad

$$
4 \times 5=
$$ ones

4×5 tens $=$ \qquad
\qquad $4 \times 50=$ tens
4. Place parentheses in the equations to find the related fact. Then, solve.
a. $3 \times 20=3 \times 2 \times 10$
b. $2 \times 30=2 \times 3 \times 10$

$$
\begin{aligned}
& =3 \times 2 \times 10 \\
& =\ldots \\
& =
\end{aligned}
$$

$$
\begin{aligned}
& =2 \times 3 \times 10 \\
& =\ldots \\
& =10
\end{aligned}
$$

5. Martin wants to buy a tablet that costs $\$ 307$. He saves $\$ 40$ a month for 8 months. Does he have enough money to buy the tablet? Explain why or why not.

Brighter Choice
Charter School for Boys
\qquad

$3^{\text {rd }}$ Grade Modified Math Remote Learning Packet

Week 19

Dear Educator,
My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.
(Parent Signature)
(Date)
Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

LEQ: How can I understand area?

Objective: I can identify shapes with the same area to understand area.

Name: \qquad
BCCS-B
\qquad Harvard Yale

Do Now:

Using Arrays to Multiply

How many rows are in the array? 4
How manv coilımns are in the array? 6 total
How many dots are in the array?
Write a multiplication fact that is shown by the array.
$4 \times 6=24$

How many rows are in the array? \qquad

How many columns are in the array? \qquad

How many dots are in the array? \qquad

Write a multiplication fact that is shown by the array.
\qquad X \qquad $=$ \qquad

How many rows are in the array? \qquad

How many columns are in the array? \qquad
How many dots are in the array? \qquad

Write a multiplication fact that is shown by the array.
\qquad x \qquad $=$

Name: \qquad BCCS-B

Input (My Turn):

A shape's \qquad is the amount of two-dimensional or flat space it takes up. To find a rectangle's area, we count the number of units, just as we would in an array.

It takes \qquad triangles to cover this shape completely.

It takes \qquad rhombuses to cover this shape completely.

To find the area of a rectangle, we use \qquad units.

The area of the rectangle to the left is \qquad square units.

Name: \qquad
BCCS-B

Input (My Turn):

Each is 1 square unit. Do both rectangles have the same area? Explain how you know.

I know the area of both shapes are the same

Name: \qquad BCCS-B

Problem Set (Your Turn):

Week 19 Day 1 Date:
Harvard Harvard Yale
\qquad

Each is 1 square unit. Do both rectangles have the same area? Explain how you know.

\qquad
\qquad

Name: \qquad
BCCS-B

Week 19 Day 1 Date: \qquad Harvard

Input (My Turn):

1. Angel uses squares to find the area of a rectangle.
a. How many squares did he use to cover the rectangle? \qquad squares

b. What is the area of the rectangle in square units? Explain how you found your answer.

I know that the area is \qquad square units is because \qquad
\qquad
\qquad
\qquad

Name: \qquad
BCCS-B

Week 19 Day 1 Date: \qquad Harvard Yale

Princeton

Problem Set (Your Turn):

1. Christopher uses squares to find the area of a rectangle.
a. How many squares did he use to cover the rectangle?

1	2	3	4	5	6	7

b. What is the area of the rectangle in square units? Explain how you found your answer. The area of the rectangle is 35 square units. I know this because I

I know that the area is \qquad square units because

Name: \qquad BCCS-B
 Week 19 Day 1 Date: \qquad Harvard Yale

Princeton

Application:

There is an array of 3×5 and another of 6×2. Do these arrays have the same area in square units? Explain why or why not.

Name:
BCCS-B
\qquad Week 19 Day 1 Date: \qquad Harvard Yale

Princeton

Exit Ticket:

1. Anthony uses squares to find the area of a rectangle.
a. How many squares did he use to cover the rectangle? \qquad squares

b. What is the area of the rectangle in square units? Explain how you found your answer.

I know that the area is \qquad square units because \qquad
\qquad
\qquad
\qquad

Name: \qquad
BCCS-B

Week 19 Day 1 Date: \qquad Harvard Yale

Princeton

Homework:

1. Each \square is 1 square unit. Find the area of each shape in square units.

Rectangle A

Rectangle B

2. There is an array of $\mathbf{2 \times 6}$ and another of 3×4. Do these arrays have the same area in square units? Explain why or why not.
\qquad
\qquad
\qquad

LEQ: How can I compare area?

Objective: I can decompose and recompose shapes to compare areas.

Name: \qquad
BCCS-B

Week 19 Day 2 Date:
Harvard

Yale

Do Now: Multiply.
$4 \times 1=4 \quad 4 \times 2=4 \times 3=4 \times 4=4$
$4 \times 5=$ \qquad
$4 \times 6=$
\qquad $4 \times 7=$ \qquad $4 \times 8=$ \qquad
$4 \times 9=$
$4 \times 10=$
$4 \times 6=$
$4 \times 7=$ \qquad
\qquad $4 \times 8=$ \qquad $4 \times 6=$ \qquad $4 \times 9=$ \qquad
$4 \times 6=$
$4 \times 10=$
$4 \times 6=$ \qquad $4 \times 7=$ \qquad $4 \times 6=$
$4 \times 7=$ \qquad
$4 \times 8=$ \qquad
$4 \times 7=$
\qquad
$4 \times 9=$ \qquad $4 \times 7=$ \qquad $4 \times 10=$ \qquad $4 \times 7=$ \qquad
$4 \times 8=$ \qquad
$4 \times 6=$ \qquad
$4 \times 8=$ \qquad
$4 \times 7=$ \qquad
$4 \times 8=$ \square
$4 \times 9=$
$4 \times 8=$ \qquad $4 \times 10=$ \qquad $4 \times 8=$
$4 \times 9=$ \qquad $4 \times 6=$ \qquad $4 \times 9=$ \qquad
$4 \times 7=$ \qquad
\qquad
$4 \times 9=$ \qquad $4 \times 8=$ \square $4 \times 9=$ \qquad
$4 \times 9=$ \qquad $4 \times 10=$ \qquad
$4 \times 6=$
\qquad
$4 \times 10=$
$4 \times 7=$ \qquad $4 \times 10=$ \qquad $4 \times 8=$ \qquad $4 \times 10=$
$4 \times 9=$ \qquad $4 \times 10=$ \qquad $4 \times 6=$ \qquad
$4 \times 8=$ \qquad $4 \times 10=$ \qquad $4 \times 7=$ \qquad $4 \times 9=$ \qquad

Name: \qquad
BCCS-B

Input (My Turn):

When we \qquad rectangles we draw a different rectangle with the same area as the original shape. We do this by finding 2 \qquad factors that will give you the same product as the area of the original shape.

1. Each is a square unit. Find the area of the rectangle below. Then, draw a different rectangle with the same number of square units.

\qquad square units

\qquad square units

Name: \qquad BCCS-B

Problem Set (Your Turn):

1. Each is a square unit. Find the area of the rectangle below. Then, draw a different rectangle with the same number of square units.

20
square units

\qquad square units

square units

Name: \qquad
BCCS-B

Week 19 Day 2 Date: \qquad
Harvard
Yale
Princeton

Input (My Turn):

Each \square is a square unit. Find the area of each rectangle. Then, circle the rectangles with the same area.
a.

b.

c.

Area = \qquad square units

Area = \qquad square units

Area = \qquad square units

Problem Set (Your Turn):

Each \square is a square unit. Find the area of each rectangle. Then, circle the rectangles with the samearea.
d.

12
Area $=$ \qquad square units
e.
\square
Area $=$ \qquad square units
f.

\qquad square units
\qquad
\qquad

Circle key humbers \& units What do 1 know?

Underiline the question
What am I being asked to solve?
Box math clue words
Am I going to,,$+- x$, or 웅?
Evaluate and Elliminate What steps do Itake? What Information don't I need?

Solve and Show your work Does my answer make sense? How oan I double oheok?

Application:

Saad and Asante use pattern blocks to make shapes as shown. Asante says his shape has a bigger area than Saad's because it is longer than his. Is he right? Explain your answer.

Name: \qquad
BCCS-B

Week 19 Day 2 Date: \qquad
Harvard
Yale
Princeton

Exit Ticket:

1. Maggie uses square units to create these two rectangles. Do the two rectangles have the same area? How do you know?

Shape A

Shape B
2. Count to find the area of the rectangle below. Then, draw a different rectangle that has the same area.

Name: \qquad
BCCS-B

Homework:

1. Colin uses square units to create these rectangles. Do they have the same area? Explain. They do not have the same area. I know this because \qquad

6 square units
8 square units
2. Each is a square unit. Count to find the area of the rectangle below. Then, draw a different rectangle that has the same area.

LEQ: How can I use tiling to measure area?

Objective: I can model tiling with centimeter and inch unit squares as a strategy to measure area.

Name:
BCCS-B

Week 19 Day 3 Date: Harvard Yale
\qquad Princeton
Princeton

Do Now:

1. Each \square is 1 square unit. What is the area of each of the following rectangles?
a.

6 square units
c.

b.

\qquad
d.

d.

e.

Name: \qquad
BCCS-B

Input (My Turn):

When finding the area of a rectangle on a grid, count the number of rows and columns.

1. Each \square is 1 square unit. What is the area of each of the following rectangles?

6
A: \qquad square units

B: \qquad
c: \qquad

D: \qquad

Name: \qquad BCCS-B

Problem Set (Your Turn):

1. Each \square is 1 square unit. What is the area of each of the following rectangles?

			A						B					
			C							D				

A: \qquad

B: \qquad

C: ${ }^{12}$ square units

D: \qquad

Name:
BCCS-B

Week 19 Day 3 Date:
Harvard
Yale

Princeton

Input (My Turn):

2. A rectangle has an area of 12 square units. Recreate it on square inch and square centimeter grid paper. Which one has a greater area?

Name:
BCCS-B

Week 19 Day 3 Date:
Harvard Yale

Problem Set (Your Turn):

2. A rectangle has an area of 16 square units. Recreate it on square inch and square centimeter grid paper. Which one has a greater area?

26 square units

Name: \qquad BCCS-B Week 19 Day 3 Date: \qquad Harvard Yale

Princeton

Application:

Freddy draws a rectangle with an area of 12 square units. Which rectangle could he have drawn? Show your thinking.

Figure 1

Figure 2

6 square units

Figure 3

Figure 4

Figure 5

Name: \qquad
BCCS-B

Week 19 Day 3 Date: \qquad
Harvard Yale
Princeton

Exit Ticket:

1. Each is 1 square unit. Write the area of Rectangle A. Then, draw a different rectangle with the same area in the space provided.

Area $=$ \qquad
2. Each is 1 square unit. Does this rectangle have the same area as Rectangle A ? Explain.

Name: \qquad
BCCS-B

Week 19 Day 3 Date:
Harvard Yale

Princeton

Homework:

1. Each \square is 1 square unit. Write the area of each rectangle. Then, draw a different rectangle with the same area in the space provided.

2. Casey draws a rectangle with an area of 5 square inches. Megan draws a rectangle with an area of 5 square centimeters. Whose rectangle has a greater area? Show your thinking.

LEQ: How can I relate side lengths with the number of tiles on a side?

Objective: I can count the squares on the side to relate side lengths with the number of tiles on a side.

Name: \qquad
BCCS-B

Week 19 Day 4 Date: \qquad Harvard

Yale
Princeton

Do Now:

Area of a Shape

Find the area of each shape by counting the square centimeters ($\mathbf{c m}^{\mathbf{2}}$).

a.

b.

c.

9 cm 2
d.

e.

f.

g.

h.

i.

Name: \qquad BCCS-B

Input (My Turn):

1. Mrs. Mercado uses square centimeter tiles to find the side lengths of the rectangle below. Label each side length. Then, count the tiles to find the total area.
\qquad

Total area: \qquad
2. Each \square is 1 square centimeter. Shahidullah says that the side length of the rectangle below is 4 centimeters. Myson says the side length is 5 centimeters. Who is correct? Explain how you know.

Name: \qquad BCCS-B

Problem Set (Your Turn):

2. Mrs. Blomgren uses square centimeter tiles to find the side lengths of the rectangle below. Label each side length. Then, count the tiles to find the total area.

Total area: \qquad
2. Each \square is 1 square centimeter. Elias says that the side length of the rectangle below is 4 centimeters. Messiah says the side length is 8 centimeters. Who is correct? Explain how you know.

I know that \qquad is correct because

Name: \qquad
BCCS-B

Week 19 Day 4 Date: \qquad
Harvard
Yale
Princeton

Input (My Turn):

3. Label the side lengths of each rectangle. Then, match the rectangle to its total area.
a.

10 square centimeters
b.

c.

18 square centimeters

Name: \qquad
BCCS-B

Problem Set (Your Turn):

3. Label the side lengths of each rectangle. Then, match the rectangle to its total area.
a.

b.

c.

Name: \qquad BCCS-B
\qquad

Harvard
Yale
Princeton

Application:

Michael uses 15 square-centimeter tiles to make a rectangle. Ashton uses 9 squarecentimeter tiles to make a rectangle. Draw what Michael and Ashton's rectangles might look like. Whose rectangle has a bigger area? How do you know?

Name: \qquad
BCCS-B

Week 19 Day 4 Date:

Harvard Yale
\qquad

Exit Ticket:

Label the side lengths of each rectangle. Then, match the rectangle to its total area.
d.

12 square centimeters
e.

f.

6 square centimeters

Name: \qquad
BCCS-B

Week 19 Day 4 Date: \qquad
Harvard
Yale
Princeton

Homework:

1. Kyle uses square centimeter tiles to find the side lengths of the rectangle below. abel each side length. Then, count the tiles to find the total area.

1

2

3

15 cm 2
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
2. Maura uses square inch tiles to find the side lengths of the rectangle below. Label each side length. Then, find the total area.

Total area: \qquad
3. Label the unknown side lengths for the rectangle below, and then find the area.

4 inches

2 inches

No school: Professional Development

[^0]: Skip count by 10

