Name

$3^{\text {rd }}$ Grade Modified Math Remote Learning Packet

Week 20

Dear Educator,
My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

LEQ: How can I form rectangles when given its area?

Objective: I can use the area's factors to form rectangle when given an area.

Name: \qquad

BCCS-B

Week 20 Day 1 Date: \qquad
Harvard Yale
Princeton

Do Now:

Multiplication Arrays

Write the multiplication fact shown by each array.

example	
20	0
$2 \times 5=10$	
200	

c. $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ ○○○○○○○○ ○○○○○○○○ ○○○○○○○○
d. x××××××××
$\times \times \times \times \times \times \times \times \times$
$\times \times \times \times \times \times \times \times \times$
$\times \times \times \times \times \times \times$
$\times \times \times \times \times \times \times \times \times$
x
xxxxxx
e.

$5 \times 7=35$
\qquad

- $1\|\|\|\|\|\|$ \|llillilll HIIIIIIIII

1. 0000
-000
0000
k. ㄷㄻ■■■■■■

Name: \qquad
BCCS-B

Input (My Turn):

When given a rectangle's area and one side length, we can \qquad to find the other side length. For example, given a rectangle with an area of 12 square feet and a known side length of 3 feet, we can skip count by 3 to find the other side length:
3, \qquad , \qquad . The side lengths are 3 feet and 4 feet.

1. Skip-count to find the unknown area. Write a multiplication sentence for each tiled rectangle.

Area: 18 square centimeters.

$3 \times 6=18$

Area: 24 square centimeters.

3 $=24$

Name: \qquad BCCS-B

Problem Set (Your Turn):

1. Skip-count to find the unknown area. Write a multiplication sentence for each tiled rectangle.
a. Area: \qquad square centimeters.
b. Area: $\mathbf{2 0}$ square centimeters.

5
d. Area: \qquad square centimeters.
c. Area: $\mathbf{1 8}$ square centimeters.

Skip count by 5

5,10,15,20

5
20
\qquad

6 $\times \ldots=$

Name: \qquad
BCCS-B

Week 20 Day 1 Date: \qquad
Harvard Yale
Princeton

Input (My Turn):

When given a rectangle's area and no side lengths, we can use \qquad pairs to determine possible side lengths. For example, given a rectangle with an area of 12 square feet and no known side lengths, possible factor pairs are:
3 feet x \qquad feet, 2 feet x \qquad feet, and 12 feet X \qquad foot.

1. Mr. Thompson has a total of 24 square inch tiles. Draw two rectangles that he might have made. Then, write multiplication sentences for each.

2. Xaiden makes a rectangle with 32 square centimeter tiles. Can Xaiden arrange all of his $\underline{\mathbf{3 2}}$ square centimeter tiles into 6 equal rows? Use words, pictures, and numbers to support your answer.

$6 \times 5=30$ if you
add one more
column it
would be 6×6
and that $=36$

Xaiden (can or cannot) create a rectangle with 32 square tiles. The rectangle above has 30 square tiles and if another column was added it would be 36 .

Name: \qquad Week 20 Day 1 Date: \qquad

Harvard
Yale
Princeton

Problem Set (Your Turn):

1. Mr. Moore has a total of 30 square inch tiles. Draw two rectangles that he might have made. Then, write multiplication sentences for each.

2. Saveon makes a rectangle with 42 square centimeter tiles. Can Saveon arrange all of his 42 square centimeter tiles into 8 equal rows? Use words, pictures, and numbers to support your answer.

Name: \qquad BCCS-B
 Week 20 Day 1 Date: \qquad Harvard Yale Princeton

Application:

Lindsey makes a rectangle with 35 square inch tiles. She arranges the tiles in 5 equal rows. What are the side lengths of the rectangle? Use words, pictures, and numbers to support your answer.

Name: \qquad
BCCS-B

Week 20 Day 1 Date: \qquad
Harvard
Yale
Princeton

Exit Ticket:

1. Mrs. Blomgren has a total of 28 square centimeter tiles. She arranges them into 7 equal rows. Draw Mrs. Blomgren's rectangle. Label the side lengths, and write a multiplication sentence to find the total area.

2. Skip-count to find the unknown area. Write a multiplication sentence for each tiled rectangle.
a. Area: $\mathbf{2 4}$ square centimeters.

\qquad
4 \times \qquad $=$ \qquad
b. Area: $\mathbf{2 4}$ square centimeters.

\qquad \times \qquad
\qquad

Name: \qquad
BCCS-B

Homework:

1. Donald makes a rectangle with 45 square inch tiles He arranges the tiles in 5 equal rows. How many square inch tiles are in each row? Use words, pictures, and numbers to support your answer.

Donald has square inch tiles in each row.
2. Skip-count to find the unknown area. Write a multiplication sentence for each tiled rectangle.
a. Area: $\mathbf{1 5}$ square centimeters.

b. Area: $\mathbf{1 5}$ square centimeters.

\qquad \times \qquad $=$ \qquad
\qquad \times \qquad $=$ \qquad

LEQ: How can I find the area of an incomplete array?

Objective: I can draw rows and columns to find the array of an incomplete array.

Name: \qquad
BCCS-B

Week 20 Day 2 Date: \qquad
Harvard
Yale
Princeton

Do Now:

Area of a Rectangle

Write the area of each rectangle listed below. Don't forget to write square units in your answer. Not all rectangles will be used.

12 sq. Units
G \qquad A - \qquad H- \qquad
\qquad F. \qquad E- \qquad

Which rectangle has the largest area? \qquad

Which two rectangles have the same area? \qquad and \qquad

Name: \qquad
BCCS-B

Input (My Turn):

Can we find the area of the arrays below?

Array 1

Extend the lines down to form the squares

Array 2

___ $\mathrm{cm} \times \ldots \quad \mathrm{cm}={ }^{6} \mathrm{sq} \mathrm{cm}$

Week 20 Day 2 Date: \qquad
Harvard Yale
Princeton

To find the area of a rectangular array, we must have a closed shape with 2 side lengths. We can find the area of incomplete arrays by drawing horizontal lines to create \qquad and vertical lines to complete \qquad . Then we can use the equation \qquad x \qquad $=$ \qquad to find the area.

Name: \qquad
BCCS-B

Week 20 Day 2 Date:
Harvard Yale

Problem Set (Your Turn):

1. Each \square represents 1 square centimeter. Draw to find the number of rows and columns in each array. Match it to its completed array. Then, fill in the blanks to make a true equation to find each array's area.
a.

5 \qquad sq cm
b.

\qquad cm \times \qquad $\mathrm{cm}=$ \qquad sq cm
C.

\qquad cm \times \qquad $\mathrm{cm}=$ \qquad sq cm
d.

\qquad $\mathrm{cm} \times$ \qquad $\mathrm{cm}=$ \qquad sq cm
e.

\qquad $\mathrm{cm} \times$ \qquad $\mathrm{cm}=$ \qquad sq cm
f.

\qquad cm \times \qquad $\mathrm{cm}=$ \qquad sq cm

Name: \qquad
BCCS-B

Week 20 Day 2 Date: \qquad
Harvard
Yale
Princeton

Input (My Turn):

2. The tile floor in Brandon's living room has a rug on it as shown below. How many square tiles are on the floor, including the tiles under the rug?

Problem Set (Your Turn):

2. The tile floor in Britney's bedroom has a rug on it as shown below. How many square tiles are on the floor, including the tiles under the rug?

$$
8 \times 11=88 \text { square tiles }
$$

Name: \qquad
\qquad
BCCS-B
Harvard
Yale
Princeton

Application:

Frank sees a book on top of his chessboard. How many squares are covered by the book? Explain your answer.

How can you accomplish this task?
We are looking for the amount of squares covered by the book.

Name: \qquad BCCS-B

Week 20 Day 2 Date: \qquad
Harvard
Yale
Princeton

Exit Ticket: (Choose 3 problems to complete)

1. Draw to find the number of rows and columns in each array. Match it to its completed array. Then, fill in the blanks to make a true equation to find each array's area.
a.

b.

c.

d.

e.

\qquad cm \times \qquad $\mathrm{cm}=$ \qquad sq cm

Name: \qquad
BCCS-B

Week 20 Day 2 Date: \qquad
Harvard
Yale

Homework:

1. The tub in Paige's bathroom covers the tile floor as shown below. How many square tiles are on the floor, including the tiles under the tub?

$$
12345678910
$$

$$
\begin{aligned}
& 9 \times 10= \\
& 9,18,27,36,45,54,63,72,81,90
\end{aligned}
$$

2. The tiled floor in Cayden's dining room has a rug on it as shown below. How many square tiles are on the floor, including the tiles under the rug?

LEQ: How can I interpret area models to form rectangular arrays?

Objective: I can form units within rectangles and interpret their area using arrays.

Name: \qquad
BCCS-B

Week 20 Day 3 Date:
Harvard
Yale
Princeton

Do Now:

Area of a Rectangle

Find the area of each rectangle.
1)

Area $={ }^{\cdots} 35$ in
4)

5)

Area $=$
3)

Area $=$

6)

8)

9)

Area $=$

Name: \qquad BCCS-B

Input (My Turn): Complete B, C, D

1. Draw a grid of equal size squares within the rectangle. Find and label the side lengths. Then, multiply the side lengths to find the area.

b. Area B:
\qquad units \times \qquad units $=$ \qquad square units
a. Area A:
${ }^{4}$ units $\times \ldots$ units $={ }^{12}$ square units units \times \qquad units $=$ square units
c. Area C:
\qquad units \times \qquad units $=$ \qquad square units

Week 20 Day 3 Date: \qquad Harvard Yale
d. Area D:
\qquad units \times \qquad units $=$ \qquad square units
e. Area E:
\qquad unit \times \qquad units $=$ \qquad square units
f. Area F:
\qquad units \times \qquad units $=$ \qquad square units

Name:
BCCS-B

Week 20 Day 3 Date: \qquad
Harvard
Yale

Problem Set (Your Turn): Complete B,C,D

1. Draw a grid of equal size squares within the rectangle. Find and label the side lengths. Then, multiply the side lengths to find the area.

a. Area A:
$\underset{\sim}{5}$ units $\times \underset{\sim}{2}$ units $=\xrightarrow{10}$ square units
d. Area D:
\qquad units \times \qquad units $=$ \qquad square units
b. Area B:
\qquad units \times \qquad units $=$ \qquad square units
c. Area C:
\qquad units \times \qquad units $=$ \qquad square units
e. Area E:
\qquad unit \times \qquad units $=$ \qquad square units
f. Area F:
\qquad units X \qquad units $=$ \qquad square units

Name: \qquad BCCS-B

Week 20 Day 3 Date: \qquad
Harvard
Yale
Princeton

Input (My Turn):

Name: \qquad
BCCS-B

Problem Set (Your Turn):

Name: \qquad Week 20 Day 3 Date: \qquad
BCCS-B
Harvard
Yale
Princeton

Application:

Lori wants to replace the square tiles on her wall. The square tiles are sold in boxes of 8 square tiles. Lori buys 6 boxes ff tiles. Does she have enough to replace all of the tiles, including the tiles under the painting? Explain your answer.

$6 \times 8=48$ square tiles

$5 \times 8=$?

8

Name: BCCS-B
\qquad Week 20 Day 3 Date: \qquad Harvard

Yale
Princeton

Exit Ticket:

1. Label the side lengths of Rectangle A on the grid below. Draw a grid of equal size squares within Rectangle A. Find the total area of Rectangle A.

Area: \qquad square units

Name: \qquad
BCCS-B

Homework:

1. Mrs. Howards's art class needs to create a stage design that covers exactly 60 square feet. Mrs. Howard marks the area for the mural as shown on the grid. Each \square represents 1 square foot. Did she mark the area correctly? Explain your answer.

2. Mrs. Blomgren draws a rectangular array. Zaymir kip-counts by threes and Gionni skipcounts by fives to find the total number of square units in the array. When they give their answers, Mrs. Blomgren says that they are both right. Use pictures, numbers, and words to explain how Zaymir and Gionni can both be right.

Zaymir	Gionni

LEQ: How can I find the area of a rectangle without a grid?

Objective: I can use side lengths to find the area of a rectangle without a grid.

Name: \qquad
BCCS-B

Week 20 Day 4 Date: \qquad Harvard

Yale
Princeton

Do Now:

Name: \qquad
BCCS-B

Input (My Turn):

1. Write a multiplication equation to find the area of the rectangle below.

Week 20 Day 4 Date: \qquad
Harvard
Yale
Princeton

7 inches

\qquad \times \qquad $=$ \qquad

6 inches

\qquad \times \qquad $=$ \qquad
2. Write a multiplication equation and a division equation to find the unknown side length for the rectangle below.
\qquad inches

\qquad inches

\qquad $\times \quad=$ \qquad
\qquad \times \qquad $=$ \qquad
\qquad \div \qquad $=$ \qquad
\qquad
\div \qquad = \qquad

Name: \qquad BCCS-B

Problem Set (Your Turn):

1. Write a multiplication equation to find the area of each rectangle.

c.
6 ft

\qquad
\qquad
\qquad
\qquad \times \qquad $=$ \qquad
2. Write a multiplication equation and a division equation to find the unknown side length for each rectangle.
\qquad ft
a.

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \div \qquad $=$ \qquad

Name: \qquad
BCCS-B

Week 20 Day 4 Date:
Harvard Yale
\qquad
Princeton

Input (My Turn):

1. Ms. Sherman draws a rectangle that has side lengths of 9 centimeters and 6 centimeters. What is the area of the rectangle? Explain how you found your answer.
2. Ms. Young's bedroom measures 6 feet by 7 feet. Her brother's bedroom measures 5 feet by 8 feet. Ms. Young says their rooms have the same exact floor area. Is she right? Why or why not?

Name: \qquad
BCCS-B

Problem Set (Your Turn):

1. Ms. Neville draws a rectangle that has side lengths of 8 centimeters and 5 centimeters. What is the area of the rectangle? Explain how you found your answer.

2. Ms. Moise's bedroom measures 8 feet by 6 feet. Her brother's bedroom measures 7 feet by 7 feet. Ms. Moise says their rooms have the same exact floor area. Is she right? Why or why not?

Name: \qquad
BCCS-B
 \square
Week 20 Day 4 Date: \qquad
Harvard
Yale
Princeton

Application:

Clifford draws a rectangle with a side length of 6 inches and an area of 24 square inches. What is the other side length? How do you know?

The other side is \qquad . I know this because $6 x$ \qquad $=24$

Name: \qquad BCCS-B

Week 20 Day 4 Date: \qquad

Yale
Princeton

Exit Ticket:

1. Write a multiplication equation to find the area of the rectangle below.

2. Write a multiplication equation and a division equation to find the unknown side length for the rectangle below.
\qquad inches

Name: \qquad BCCS-B

Week 20 Day 4 Date: \qquad Harvard

Yale
Princeton

Homework:

1. Write a multiplication equation to find the area of each rectangle.
a.

b.

C.

\qquad \times \qquad
\qquad
d.

\qquad \times \qquad $=$
2. Charles draws a rectangle with a side length of 9 inches and an area of 27 square inches. What is the other side length? How do you know?

LEQ: How can I find the total area of a large rectangle?

Objective: I can use the distributive property to find the total area of a large rectangle

Name: \qquad
BCCS-B

Week 20 Day 5 Date: \qquad Harvard

Yale
Princeton

Do Now:

Area of a Rectangle

Write the area of each rectangle listed below. Don't forget to write square units in your answer. Not all rectangles will be used.
B - \qquad F- \qquad H- \qquad G \qquad A \qquad
E- \qquad

Which rectangle has the largest area? \qquad
\qquad and

Name: \qquad
BCCS-B

Input (My Turn):

1. Label the side lengths of the shaded and unshaded rectangles. Then, find the total area of the large rectangle by adding the areas of the 2 smaller rectangles.

Week 20 Day 5 Date: \qquad
Harvard
Yale
Princeton
a.
8
5

$9 \times 8=(5 \times 8)+(4 \times 8)$
$=$ \qquad $+$ \qquad
$=$ \qquad
4

Area: \qquad square units
b.
 $12 \times 5=$ \qquad $\times 5)+($ \qquad $\times 5$)
$=$ \qquad $+$ \qquad
$=$ \qquad
Area: \qquad square units

Name: \qquad
BCCS-B

Problem Set (Your Turn):

1. Label the side lengths of the shaded and unshaded rectangles. Then, find the total area of the large rectangle by adding the areas of the 2 smaller rectangles.
a.
6
5

$9 \times 6=(5 \times 6)+(4 \times 6)$

$$
\begin{aligned}
& =30 \\
& =54
\end{aligned}
$$

Area: 54 square units
4
(20
\qquad
C.

$7 \times 13=\left(7 \times _\right.$_ $)+(7 \times 3)$
$=$ \qquad $+$ \qquad
$=$ \qquad
Area: \qquad square units
b.

Area: \qquad square units

8
$12 \times 8=($ \qquad $\times 8)+($ \qquad $\times 8)$
$=$ \qquad
\qquad
$=$ \qquad
8
=

2

Week 20 Day 5 Date: \qquad
Harvard Yale
Princeton
d.

$$
9 \times 12=\left(9 \times __\right)+\left(9 \times __\right)
$$

\qquad $+$ \qquad
$=$ \qquad

Area: \qquad square units

Name: \qquad BCCS-B

Week 20 Day 5 Date:
Harvard Yale
Princeton

Input (My Turn):

2. Shade an area to break the 16×4 rectangle into 2 smaller rectangles. Then, find the sum of the areas of the 2 smaller rectangles to find the total area. Explain your thinking.

Problem Set (Your Turn):

2. Shade an area to break the 15×3 rectangle into 2 smaller rectangles. Then, find the sum of the areas of the 2 smaller rectangles to find the total area. Explain your thinking.

Name: \qquad
\qquad

Application:

Vince imagines 1 more row of eight to find the total area of a 9×8 rectangle. Explain how this could help him solve 9×8.

Name: \qquad
BCCS-B

Week 20 Day 5 Date: \qquad
Harvard
Yale
Princeton

Exit Ticket:

Label the side lengths of the shaded and unshaded rectangles. Then, find the total area of the large rectangle by adding the areas of the 2 smaller rectangles.

2.

$9 \times 13=19 \times$ \qquad) $+(9 \times$ \qquad

$$
=
$$

\qquad $+$ \qquad
$=$ \qquad

Area: \qquad square units

Area: \qquad square units

Name: \qquad
BCCS-B

Homework:

1. Label the side lengths of the shaded and unshaded rectangles when needed. Then, find the total area of the large rectangle by adding the areas of the two smaller rectangles.
a.

$$
\begin{aligned}
8 \times 7 & =(5 \times 7)+(3 \times 7) \\
& =-35+221 \\
& =56
\end{aligned}
$$

Area: square units
\square
. $\quad 56$ square units
b.

Area: \qquad square units
$12 \times 4=($ \qquad $\times 4)+(2 \times 4)$
$=$ \qquad $+8$
$=$

2
 res

.
\qquad
2. Break the 15×3 rectangle into 2 rectangles by shading one smaller rectangle within it. Then, find the sum of the areas of the $\mathbf{2}$ smaller rectangles and show how it relates to the total area. Explain your thinking.

Brighter Choice
Name Charter School for Boys

$3^{\text {rd }}$ Grade Modified Math Remote Learning Packet

Week 21

Dear Educator,
My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

LEQ: How can I solve word problems involving area?

Objective: I can draw and label a rectangle to solve word problems involving area.

Name: \qquad
BCCS-B

Week 21 Day 1 Date:
Harvard
Yale
Princeton

Do Now:

Find the area (in cm) of the rectangles shown.

Name: \qquad
BCCS-B

Input (My Turn):

1. Each side on a sticky note measures 9 centimeters. What is the area of the sticky note?
2. Shahidullah tiles the rectangle below using his square pattern blocks.

a. Find the area of his rectangle in square units. Then, draw and label a different rectangle with whole number side lengths that has the same area.
b. Can you draw another rectangle with different whole number side lengths and have the same area? Explain how you know.

Name:
BCCS-B
\qquad

Problem Set (Your Turn):

1. Each side on a sticky note measures 16 centimeters. What is the area of the sticky note?
$16+16+16+16$
$16 \times 4=$
2. Asante tiles the rectangle below using his square pattern blocks.

a. Find the area of his rectangle in square units. Then, draw and label a different rectangle with whole number side lengths that has the same area.
c. Can you draw another rectangle with different whole number side lengths and have the same area? Explain how you know.

Name:
BCCS-B
\qquad Week 21 Day 1 Date: \qquad
Harvard
Yale
Princeton

Input (My Turn):

3. An artist paints a 5 foot $\times 18$ foot mural on a wall. What is the total area of the mural? Use the break apart and distribute strategy.

4. Jeremiah glues 4 identical pieces of paper as shown below and makes a square. Find the unknown side length of 1 piece of paper. Then, find the total area of 2 pieces of paper.

Name: \qquad
BCCS-B

Week 21 Day 1 Date: \qquad Harvard Yale Princeton

Problem Set (Your Turn):

3. An artist paints a 4 foot $\times 16$ foot mural on a wall. What is the total area of the mural? Use the break apart and distribute strategy.

4. Susan glues 3 identical pieces of paper as shown below and makes a square. Find the unknown side length of 1 piece of paper. Then, find the total area of 2 pieces of paper.

\qquad
\qquad
BCCS-B
Harvard
Yale
Princeton

Circle keynumbers \& units
What do 1 know?
Underline the question
What am I being asked to solve?
Box math clue words
Am I going to,,$+- x$, or 웅?
Evaluate and Elliminate
What steps do I take?
What information don't I need?
Solve and Show your work
Does my answer make sense? How oan I double oheok?

Application:

A rectangular garden has a total area of 48 square yards. Draw and label two possible rectangular gardens with different side lengths that have the same area.

Name: \qquad
BCCS-B

Week 21 Day 1 Date: Harvard Yale
\qquad

Exit Ticket:

1. A painting has an area of 63 square inches. One side length is 9 inches. What is the other side length?

9 inches

2. Judy's mini dollhouse has one floor and measures 4 inches by 16 inches. What is the total area of the dollhouse floor?

Name: \qquad
BCCS-B
\qquad
Harvard
Yale
Princeton

Homework:

1. A square calendar has sides that are 6 inches long. What is the calendar's area?

2. Each is 1 square unit. Sienna uses the same square units to draw a 6×2 rectangle and says that it has the same area as the rectangle below. Is she correct? Explain why or why not.

3. The surface of an office desk has an area of 15 square feet. Its length is 5 feet. How wide is the office desk?

LEQ: How can I find the area of a composite rectangle without a grid?

Objective: I can find the areas of composite figures by creating two different rectangles through decomposition or completing the rectangle and multiplying LxW.

Name: \qquad
BCCS-B

Week 21 Day 2 Date: \qquad Harvard

Yale
Princeton

Do Now:

Addition With Regrouping

Add.

2.

3.

5.

6.

Name: \qquad BCCS-B

Input (My Turn):

A shape made up of 2 or more rectangles is an irregular or \qquad shape. To find the area of a composite shape, we can \qquad to make separate rectangles and add to find the area of the figure. We can also complete a larger rectangle and subtract the unshaded area.

Break Apart and Distribute:

Completing the Rectangle:

Name:
BCCS-B

Week 21 Day 2 Date:
Harvard

Input (My Turn):

1. Each of the following figures is made up of 2 rectangles. Find the total area of each figure.

Figure 1: Area of $A+$ Area of B : \qquad sq units + \qquad sq units = \qquad sq units

Figure 2: Area of $C+$ Area of D : \qquad sq units + \qquad sq units = \qquad sq units

Figure 3: Area of $\mathrm{E}+$ Area of F : \qquad sq units + \qquad sq units = \qquad sq units

Figure 4: Area of $\mathrm{G}+$ Area of H : \qquad sq units + \qquad sq units = \qquad sq units

Name:
BCCS-B

Week 21 Day 2 Date:
Harvard

Problem Set (Your Turn):

1. Each of the following figures is made up of 2 rectangles. Find the total area of each figure.

	Figur																						
														Figur	re 2								
		A												C									
																		D					
	B																						
					E													Fig	ure 4				
	Figur																						
			F																				
																	G						
																						H	

Figure 1: Area of $A+$ Area of B : \qquad sq units + \qquad sq units = \qquad sq units

Figure 2: Area of $C+$ Area of D : \qquad $s q$ units + \qquad $s q$ units $=$ \qquad sq units

Figure 3: Area of $E+$ Area of F : \qquad sq units + \qquad sq units = \qquad sq units

Figure 4: Area of $\mathrm{G}+$ Area of H : \qquad sq units + \qquad sq units = \qquad sq units

Name: \qquad
BCCS-B

Week 21 Day 2 Date: \qquad
Harvard
Yale
Princeton

Problem Set (Your Turn):

2. The figure shows a small rectangle cut out of a bigger rectangle. Find the area of the shaded figure.

3. The figure shows a small rectangle cut out of a big rectangle.
a. Label the unknown measurements.

b. Area of the big rectangle:
\qquad cm \times \qquad $\mathrm{cm}=$ \qquad sq cm
c. Area of the small rectangle:
\qquad cm \times \qquad $\mathrm{cm}=$ \qquad sq cm
d. Find the area of the shaded figure.

Name: \qquad BCCS-B

Week 21 Day 2 Date: \qquad
Harvard
Yale
Princeton

Application:

Alex says the area of the figure below is 56 square centimeters. Becky says it's 47 square centimeters. Who do you agree with? Show your thinking.

Name:
BCCS-B

Exit Ticket:

The following figure is made up of 2 rectangles. Find the total area of the figure.

				A						
						B				

Area of $A+$ Area of B : \qquad sq units + \qquad sq units $=$ \qquad sq units

Name:
BCCS-B
\qquad

Homework:

1. Each of the following figures is made up of 2 rectangles. Find the total area of each figure.

Figure 1: Area of $A+$ Area of B : \qquad sq units + \qquad sq units = \qquad sq units

Figure 2: Area of $C+$ Area of D : \qquad sq units + \qquad sq units = \qquad sq units

Figure 3: Area of $E+$ Area of F : \qquad sq units + \qquad sq units = \qquad sq units

Figure 4: Area of $\mathrm{G}+$ Area of H : \qquad sq units + \qquad sq units = \qquad sq units

Name: \qquad
BCCS-B

Homework:

2. The figure shows a small rectangle cut out of a big rectangle.

a. Label the unknown measurements.
b. Area of the big rectangle:
\qquad cm \times \qquad $\mathrm{cm}=$ \qquad sq cm
c. Area of the small rectangle:
\qquad cm \times \qquad $\mathrm{cm}=$ \qquad sq cm
d. Find the area of the shaded figure.

9 cm

LEQ: How can I find the area of a composite rectangle without a grid?

Objective: I can find the areas of composite figures by creating two different rectangles through decomposition or completing the rectangle and multiplying LxW.

Name: \qquad

Week 21 Day 3 Date:
Harvard

Do Now:
Calculate each product.

6	9	4	9	9	9	9	5	10	12
+9	$\times 11$	$\times 9$	$\times 9$	$\times 7$	$\times 1$	$\times 8$	+9	$\times 9$	$\begin{array}{r} \\ \times 9 \\ \hline\end{array}$
54	99								
3	9	9	9	10	9	4	9	9	9
$\begin{array}{r} \\ \times 9 \\ \hline\end{array}$	$\times 2$	+12	$\times 6$	$\times 9$	$\times 11$	$\times 9$	$\times 2$	$\times 5$	$\times 3$
9	8	1	9	9	9	12	3	11	9
$\times 7$	$\begin{array}{r} \\ \times 9 \\ \hline\end{array}$	$\times 9$	$\times 9$	$\times 6$	$\times 7$	$\times 9$	$\times 9$	+9	$\times 5$

4
10
$\times 9$
$\times 9$

9
9
$\times 9$
$\times 3$

9
9
$\times 9$
$\times 12$

9
9
$\times 2$
$\times 9$

9
9
$\times 4$
$\times 7$

| 8 |
| ---: | | 5 |
| ---: |
| $\times 9$ |
| $\times 9$ |

$\begin{array}{r}9 \\ 9 \\ \times 7 \\ \times 9 \\ \hline\end{array}$

Name: \qquad BCCS-B

Input (My Turn):

Week 21 Day 3 Date:
Harvard Yale Princeton

1. Find the area of each of the following figures. All figures are made up of rectangles.
a.

b.

2. The figure below shows a small rectangle in a big rectangle. Find the area of the shaded part of the figure.

Name: \qquad BCCS-B

Problem Set (Your Turn):

1. Find the area of each of the following figures. All figures are made up of rectangles.

b.

Week 21 Day 3 Date: \qquad
2. The figure below shows a small rectangle in a big rectangle. Find the area of the shaded part of the figure.

Name:
BCCS-B Input (My Turn):

Week 21 Day 3 Date:
Harvard Yale Princeton
3. Manny draws a 9 cm by 6 cm rectangle on his grid paper. He shades a square with a side length of 4 cm inside his rectangle. What area of the rectangle is left unshaded?
4. A paper rectangle has a length of 6 inches and a width of 8 inches. A square with a side length of 3 inches was cut out of it. What is the area of the remaining paper?

Name: \qquad

Problem Set (Your Turn):

3. Manny draws an 8 cm by 4 cm rectangle on his grid paper. He shades a square with a side length of 3 cm inside his rectangle. What area of the rectangle is left unshaded?
4. A paper rectangle has a length of 5 inches and a width of 9 inches. A square with a side length of 4 inches was cut out of it. What is the area of the remaining paper?

Name: \qquad BCCS-B
\qquad

Application:

Tim and Evan both have paper rectangles measuring 6 cm by 9 cm . Tim cuts a 3 cm by 4 cm rectangle out of his, and Evan cuts a 2 cm by 6 cm rectangle out of his. Tim says he has more paper left over. Evan says they have the same amount. Who is correct? Show your work below.

Name: \qquad
BCCS-B

Week 21 Day 3 Date:
Harvard Yale

Exit Ticket:

Mary draws an 8 cm by 6 cm rectangle on her grid paper. She shades a square with a side length of 4 cm inside her rectangle. What area of the rectangle is left unshaded?

Name: \qquad
BCCS-B

Week 21 Day 3 Date: \qquad
Harvard
Yale
Princeton

Homework:

1. Find the area of each of the following figures. All figures are made up of rectangles.
a.

b.

LEQ: How can I label and partition a whole into equal parts?

Objective: I can draw lines to make equal parts and count the number of parts to label its fractional unit.

Name: \qquad
BCCS-B

Week 21 Day 4 Date: \qquad Harvard

Yale
Princeton

Do Now:

Rabbits on Vacation

Subtract to find the differences.
Then match the letters to the blanks below to solve the riddle.
(I) 888
-295
(E) 619
(A) 212
-461
-190
(N 770
(H) 532
$\begin{array}{r}-56 \\ \hline\end{array}$
-341

(P) 548
(A) 534 $\begin{array}{r}-\quad 98 \\ \hline\end{array}$ -519
(L) 300
-190
(A) 912
(R) 467
-672
$\begin{array}{r}-\quad 58 \\ \hline\end{array}$

How do rabbits travel?

$$
\begin{array}{llllllll}
\overline{593} & \overline{155} & \overline{15} \\
\overline{191} & \overline{240} & \overline{409} & \overline{226} & \overline{450} & \overline{110} & \overline{22} & \overline{714}
\end{array} \frac{\overline{158}}{}
$$

Name: \qquad BCCS-B

Input (My Turn):

A \qquad is a part of a whole amount. We use fractions to represent a section of an entire shape. A fractional \qquad is the amount of equal parts a shape is divided or
\qquad into. For example, the fractional unit for 2 equal parts is halves.

Partition each rectangle to show the fractional unit.

Fractional Unit	Rectangle
Halves	\square
Thirds	\square
Fourths	\square
Fifths	\square
Sixths	\square

Name: \qquad
BCCS-B

Input (My Turn):

1. A beaker is considered full when the liquid reaches the fill line shown near the top.

Estimate the amount of water in the beaker by shading the drawing as indicated. The first one is done for you.

2. Juanita cut her string cheese into equal pieces as shown in the rectangles below. In the blanks below, name the fraction of the string cheese represented by the shaded part.

Name:
BCCS-B

Problem Set (Your Turn):

1. A beaker is considered full when the liquid reaches the fill line shown near the top.

Estimate the amount of water in the beaker by shading the drawing as indicated.

Week 21 Day 4 Date: Harvard

Yale
Princeton

2. Jacob cut his string cheese into equal pieces as shown in the rectangles below. In the blanks below, name the fraction of the string cheese represented by the shaded part.

\qquad

\qquad

Name: \qquad
BCCS-B

Input (My Turn):

In the space below, draw a small rectangle. Estimate to split it into 2 equal parts. How many lines did you draw to make 2 equal parts? What is the name of each fractional unit?

I drew \qquad lines to make 2 equal parts.

Fraction Unit: \qquad

Draw another small rectangle. Estimate to split it into 3 equal parts. How many lines did you draw to make 3 equal parts? What is the name of each fractional unit?

I drew \qquad lines to make 3 equal parts.

Fraction Unit: \qquad
3. Mrs. Mclean has a strip of wood 12 inches long. She cuts it into pieces that are each 6 inches in length. What fraction of the wood is one piece? Draw a picture to show the piece of wood and how Mrs. Mclean cut it.

Name: \qquad
BCCS-B

Week 21 Day 4 Date: \qquad Harvard

Yale
Princeton

Problem Set (Your Turn):

3. Mrs. Cosgrave has a strip of wood 14 inches long She cuts it into pieces that are each $\underline{7}$ inches in length. What fraction of the wood is one piece? Draw a picture to show the piece of wood and how Mrs. Cosgrave cut it.

14 inches

4. Messiah has a strip of paper 12 inches long. He cuts it into pieces that are each 4 inches in length. What fraction of the strip is one piece? Draw a picture to show the piece of paper and how Messiah cut it.
\qquad

12 inches

Name: \qquad BCCS-B
\qquad

Application:

Ms. Sherman has a strip of wood 12 inches long and makes fractional units of thirds. How long is one third?

12 inches

Name: \qquad BCCS-B

Exit Ticket:

1. Name the fraction that is shaded.

Week 21 Day 4 Date: \qquad Harvard Yale

Princeton
2. Estimate to partition the rectangle into thirds.

3. A plumber has 12 feet of pipe. He cuts it into pieces that are each 3 feet in length. What fraction of the pipe would one piece represent?

Name: \qquad
BCCS-B

Week 21 Day 4 Date: \qquad Harvard

Princeton

1. Each circle represents 1 whole pie. Estimate to show how you would cut the pie into fractional units as indicated below.

halves

thirds

sixths
2. Each rectangle represents 1 sheet of paper. Estimate to draw lines to show how you would cut the paper into fractional units as indicated below.

3. Yuri has a rope 12 meters long. He cuts it into pieces that are each 2 meters long. What fraction of the rope is one piece? Draw a picture.

LEQ: How can I identify unit fractions in shapes with equal parts?

Objective: I can name the fractional unit and then count and tell how many of those units are shaded.

Name: \qquad
BCCS-B

Do Now: a.

Week 21 Day 5 Date: \qquad Harvard

Yale
Princeton
\qquad equal parts.

It is divided into \qquad .

One part is called \qquad _.
b.

This rectangle has \qquad equal parts.

It is divided into \qquad .

One part is called \qquad .
c.

This circle has \qquad equal parts. It is divided into \qquad .

One part is called \qquad _.
d.

This rectangle has \qquad equal parts.

It is divided into \qquad .

One part is called \qquad .
e.

This circle has \qquad equal parts.

It is divided into \qquad .

One part is called \qquad

Name: \qquad BCCS-B

Input (My Turn):

Circle the shapes that are divided into equal parts. (circle more than one)

Equal parts are pieces that are the same \qquad .

1. Each shape is a whole divided into equal parts. Name the fractional unit, and then count and tell how many of those units are shaded.

\qquad
\qquad
\qquad
\qquad
2. Each shape is 1 whole. Divide and shade to show the given fraction.

1 half
4 sixths
2 thirds

Week 21 Day 5 Date: \qquad
Harvard
Yale
Princeton

\qquad

Name: \qquad BCCS-B

Week 21 Day 5 Date: \qquad
Harvard
Yale
Princeton

Problem Set (Your Turn):

1. Each shape is a whole divided into equal parts. Name the fractional unit, and then count and tell how many of those units are shaded.

One fourth

\qquad
2. Each shape is 1 whole. Divide and shade to show the given fraction.

2 fifths
$2 / 5$

3 eighths
3/8

Name: \qquad
BCCS-B
\qquad

Input (My Turn):

3. Charlie wants to equally share a candy bar with 4 friends. Draw Charlie's candy bar. Show how he can divide his candy bar so everyone gets an equal share. What fraction of the candy bar does each person receive? Add Charlie to his 4 friends

Each person receives \qquad .
4. Megan wants to equally share a pizza pie with friends. Draw Megan's pizza pie. Show how she can divide her pizza pie so everyone gets an equal share. What fraction does each person receive? Add Megan to her $\mathbf{7}$ friends

Each person receives \qquad

Name: \qquad
BCCS-B

Week 21 Day 5 Date: \qquad Harvard Yale

Princeton

Problem Set (Your Turn):

3. Carter wants to equally share a bread loaf with 3 friends. Draw Carter's bread loaf. Show how he can divide his it so everyone gets an equal share. What fraction of the bread loaf does each person receive? Add Carter to his 3 friends

Each person receives \qquad .
4. Mrs. Page wants to equally share a pie with 9 friends. Draw Mrs. Page's pie. Show how she can divide her pie so everyone gets an equal share. What fraction does each person receive? Don't forget to add Mrs. Page to the 9 friends

Name: \qquad BCCS-B
\qquad Harvard Yale Princeton

Application:

Marcos has a 1-liter jar of milk to share with his mother, father, and sister. Draw a picture to show how Marcos must share the milk so that everyone gets the same amount. What fraction of the milk does each person get?

Name: \qquad
BCCS-B

Week 21 Day 5 Date: \qquad
Harvard
Yale
Princeton

Exit Ticket:

1.

\qquad sevenths are shaded
2. Circle the shapes that are divided into equal parts.

3. Steven wants to equally share his pizza with his 3 sisters. What fraction of the pizza does he and each sister receive?

He and each sister receive \qquad

Name: \qquad
BCCS-B

Week 21 Day 5 Date: \qquad
Harvard
Yale
Princeton

Homework:

1. Each shape is a whole divided into equal parts. Name the fractional unit, and then count and tell how many of those units are shaded. The first one is done for you.

Fourths
2 fourths are shaded.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Each shape is 1 whole. Estimate to divide each into equal parts. Divide each whole using a different fractional unit. Write the name of the fractional unit on the line below the shape.

\qquad
3. Anita uses 1 sheet of paper to make a calendar showing each month of the year. Draw Anita's calendar. Show how she can divide her calendar so that each month is given the same space. What fraction of the calendar does each month receive?

Each month receives \qquad

