5th Grade Math

Week of January 25 - January 28, 2021

Name

* Please do not complete until advised by teacher*

January 25, 2021

In October BCCS-G collected 3,041 boxtops. In Nove How many were collected in all?	ember, we collected 148	more boxtops than in	Octobe
		19 to 11.	
Answer (with unit):			
Equation that matches your work:			
Explain your thinking:			
		•	

Solve each problem.

1. 581.3 ÷ 10

2. $581.3 \div 10^2$

3. $581.3 \div 10^3$

4. 1.35 ÷ 3

5. 5.16 ÷ 6

6. 8.8 ÷ 0.44

7. 86.4 ÷ 0.2

8. 78.2 ÷ 17

9. 12.74 ÷ 13

	······································	**************************************		
wer (with unit):				
lation that matches your	work:			
lain your thinking:	THE PARTY OF THE P			

Topic 6 Assessment

1.

What is 82.68 ÷ 1,000?

- C A. 0.08268
- C. 0.008268
- C D. 8.268

2.

Sandy plans on making 100 cookies that are the same size from 212.7 ounces of dough. How many ounces of dough should make up each cookie?

- A. 0.2127 ounces
- B. 0.02127 ounces
- C. 2.127 ounces
- C D. 21.27 ounces

3.

Which number sentence shows the best way to estimate $64.12 \div 7.4$?

- $60 \div 10 = 6$ Α.
- C B. $63 \div 7 = 9$
- C. $56 \div 7 = 8$
- ← D. $100 \div 10 = 10$

4.

Estimate the quotient by rounding each number to the nearest whole number.

33.7 ÷ 9.5

5.

Find the quotient.

 $6.15 \div 5$

- \subset 1.03
- 1.3
- (1.2

6.

Find 9.24 ÷ 6.

7.

Grace paid \$54.40 for 8 outdoor pathway lights.

Travis paid \$40.25 for 5 of the same lights at a different store.

Use the drop-down menus to explain who paid less per light.

8. Which is equal to 73.5 divided by 15?
0.49 C
4.09 C
4.9 C
49
9. A coach pays \$100.44 for 36 baseballs. What is the cost of each baseball?

```
10.
Find 2.55 ÷ 0.05.

• C
51
• C
510
• C
5,100
• C
51,000
```

11.

What is the quotient of $28.32 \div 0.24$?

12. A service club is selling raffle tickets for \$2.50 each to raise money for a charity. Vanessa has \$34.75 to spend on raffle tickets. What is the greatest number of raffle tickets she can buy?
C 12 tickets
13 tickets
14 tickets
15 tickets
13.
Which expressions have a quotient of 6? Select all that apply.
0.48 ÷ 0.8
4.8 ÷ 8
0.48 ÷ 0.08
4.8 ÷ 0.8 □
4.8 ÷ 0.08
14. Staci pays \$32.70 for 5 cell phone cases. Each case costs the same amount. How much does each case cost?
Part A Which expression represents the problem? \$\times \text{32.70 \times 5}\$
ξ ΨΟΔ.ΤΟ ^Δ Ο
C \$32.70 + 5
C \$32.70 – 5

Evaluate the expression from Part A. Answer: __

15.

What is the value of the missing exponent in the equation $7.4 \div 10^{\circ} = 0.074$?

- ~ 1
- ~ 3
- (0

16.

Brett's music teacher spent \$134.30 on 17 song books. What is the cost per book?

- \$7.30
- 🦿 \$17.30
- \$17.90

17.

Match each expression on the left with its quotient.

- 0.0306
- 3.6
- 0.306
- 0.036

$$360 \div 10^2 =$$

$$30.6 \div 10^3 =$$

$$0.36 \div 10 =$$

$$3,060 \div 10^4 =$$

January 27, 2021

The fourth grade is traveling from Albany to Washington, D.C. to visit the White House. The total drivir distance is 369 miles. If the bus has 178 miles left to travel, how much has it already traveled?	ıg
Answer (with unit):	
Equation that matches your work:	
Explain your thinking:	

Estimate each sum or difference by replacing each fraction with a 0, $\frac{1}{2}$, or 1.

1.
$$\frac{8}{14} - \frac{4}{10}$$

2.
$$\frac{15}{20} + \frac{7}{8}$$

3.
$$\frac{7}{8} - \frac{4}{10}$$

Additional Practice 7-1 **Estimate Sums** and Differences of Fractions

Another Look!

Estimate $\frac{10}{12} - \frac{4}{9}$.

You can use halfway numbers to help decide if each fraction is closest to 0, to $\frac{1}{2}$, or to 1.

Step 1

Is $\frac{10}{12}$ closest to 0, $\frac{1}{2}$, or 1?

Find the halfway number between 0 and the denominator.

6 is halfway between 0 and 12.

Decide if the numerator is about the same as the halfway number, closer to 0, or closer to 12.

10 is closest to 12.

So, $\frac{10}{12}$ is closest to 1.

Step 2

Is $\frac{4}{9}$ closest to 0, $\frac{1}{2}$, or 1?

If the numerator is closest to the halfway number, the fraction is closest to $\frac{1}{2}$.

 $4\frac{1}{2}$ is halfway between 0 and 9.

4 is closest to $4\frac{1}{2}$.

So, $\frac{4}{9}$ is closest to $\frac{1}{2}$.

 $\frac{10}{12} - \frac{4}{9}$ is about $1 - \frac{1}{2} = \frac{1}{2}$.

Leveled Practice In 1–7, estimate each sum or difference by replacing each fraction with $0, \frac{1}{2}$, or 1.

1.
$$\frac{1}{0}$$
 $\frac{1}{2}$ 1

$$0 \qquad \frac{1}{2} \qquad 1$$

$$\frac{4}{18} + \frac{3}{7}$$

$$=_{\text{nondournelle production of the production$$

2.
$$\frac{8}{15} + \frac{2}{5}$$

4.
$$\frac{8}{10} + \frac{4}{9}$$

6.
$$\frac{15}{20} + \frac{7}{8}$$

3.
$$\frac{17}{21} - \frac{2}{10}$$

5.
$$\frac{12}{15} - \frac{3}{7}$$

7.
$$\frac{8}{14} - \frac{4}{10}$$

	·		

****	****	 	14,14	
er (with unit):			 	
ver (with unit): tion that matche	s your work:			
tion that matche	s your work:			
tion that matche	s your work:			

Find a common denominator for each set of fractions. Then write the equivalent fractions.

1.
$$\frac{3}{4}$$
 and $\frac{4}{10}$

$$2. \qquad \frac{3}{7} \ and \quad \frac{2}{3}$$

Additional Practice 7-2 Find Common **Denominators**

Another Look!

Rename $\frac{4}{10}$ and $\frac{3}{8}$ using a common

Remember: A multiple is a product of the number and any nonzero whole number.

Step 1

Find a common denominator for $\frac{4}{10}$ and $\frac{3}{8}$.

List multiples of the denominators 10 and 8. Then look for a common multiple.

The number 40 can be used as the common denominator.

Step 2

Rename $\frac{4}{10}$ and $\frac{3}{8}$ using 40 as the common denominator.

Multiply the numerator and denominator by the same nonzero number.

$$\frac{4}{10}$$
 $\frac{4 \times 4}{10 \times 4} = \frac{16}{40}$ $\frac{3}{8}$ $\frac{3 \times 5}{8 \times 5} = \frac{15}{40}$

$$\frac{3}{8}$$
 $\frac{3 \times 5}{8 \times 5} = \frac{15}{40}$

So, $\frac{16}{40}$ and $\frac{15}{40}$ is one way to rename $\frac{4}{10}$ and $\frac{3}{8}$ using a common denominator.

In **1–9**, find a common denominator for each pair of fractions. Then write equivalent fractions with the common denominator.

- 1. $\frac{1}{3}$ and $\frac{4}{9}$
 - $\frac{1}{3}$ Multiples of the denominator: ______ Rename $\frac{1}{3}$: _____
 - $\frac{4}{9}$ Multiples of the denominator: ______ Rename $\frac{4}{9}$: _____

Common Denominator: _____

Rename.
$$\frac{1 \times \square}{3 \times \square} = \frac{\square}{\square} \qquad \frac{4 \times \square}{9 \times \square} = \frac{\square}{\square}$$

- 2. $\frac{3}{4}$ and $\frac{2}{5}$
- 3. $\frac{4}{7}$ and $\frac{2}{3}$
- **4.** $\frac{1}{2}$ and $\frac{7}{11}$
- 5. $\frac{5}{12}$ and $\frac{3}{5}$

- **6.** $\frac{5}{4}$ and $\frac{11}{16}$
- **7.** $\frac{6}{7}$ and $\frac{1}{5}$
- **8.** $\frac{9}{15}$ and $\frac{4}{9}$
- **9.** $\frac{5}{6}$ and $\frac{8}{21}$

·			

Enrichment

Shift It!

Directions: Use equations to solve each problem. Show your work.

$$4 \times 10^2 =$$

$$4 \times 10^3 =$$

$$4 \div 10^2 =$$

Why does the decimal point shift to the left when dividing a whole number by a power of 10? Explain your reasoning.

Power Patterns

Directions: Use equations to solve each problem. Show your work.

$$6 \times 10^3 =$$

$$7 \times 10^2 =$$

3 Explain the connection between the powers of 10 and the number of zeros in the product.

$$3 \div 10^2 =$$

6
$$8 \div 10^3 =$$

6 Explain the connection between the shifting of the decimal point when dividing by powers of 10.

Name:____

Date:

LESSON 4

Quick V Check

Directions: Solve the following problems. Choose the correct answer.

$$8 \times 10^2 =$$

$$4 \div 10^2 =$$

$$\bigcirc 0.04$$

$$3 \times 10^3 =$$

$$2 \div 10^1 =$$

$$\bigcirc$$
 0.2

6 Explain how to solve the problem
$$5 \times 10^3$$
.

6 Explain how to solve the problem $9 \div 10^2$.

Directions: Solve each problem. Show your work.

1 Use a place value chart.

 $4 \times 10^2 =$ _____

② Use a place value chart.

 $8 \times 10^2 =$ _____

$$4 \div 10^2 =$$

 $8 \div 10^2 =$ _____

Name:_____

Date:

LESSON 4

Independent Practice

Directions: Solve the following problems.

$$6 \times 10^1 =$$

$$5 \times 10^2 =$$

$$5 \times 10^3 =$$

$$5 \times 10^4 =$$

$$5 \times 10^5 =$$

$$5 \times 10^6 = \underline{\hspace{1cm}}$$

$$8 \div 10^1 =$$

$$8 \div 10^2 =$$

$$8 \div 10^3 =$$

$$8 \div 10^4 =$$

$$8 \div 10^5 =$$

$$8 \div 10^6 =$$

Territor.																
200							problems									
8		 ~ .	r.	~			. 1 1	٦.	1 . 1		7 . 7				~	
9. 6	ca.	 1200+0	4	~ t ·		~~~~									- 1	70
100	- 10	 . 10416	111/64	()	Vanir.	(11/4/11	nranieme	That	militimix	α r	annaa	N17 +1	1Ω 1	$\alpha \alpha x x t \alpha x$	C Ot	341
320	_		1110	$\mathcal{O}_{\mathbf{I}}$	YOUL	OVVII	OT ODIOTITIO	ша	TITULLULY	C Z I	CLIVICA	170 11	15	N 1 VV [7]	2011	
28.80	2165				/							~ ,	~~	J J J L	· ·	
100							-						,	_		
1000																

Enrichment

· ·	I

- 1		T	
-			
ĺ			
		·	
l			
	ļ		
١			
١			
			İ