Name:		_
College:		

4th Grade Math

Week of: 2/1-2/5

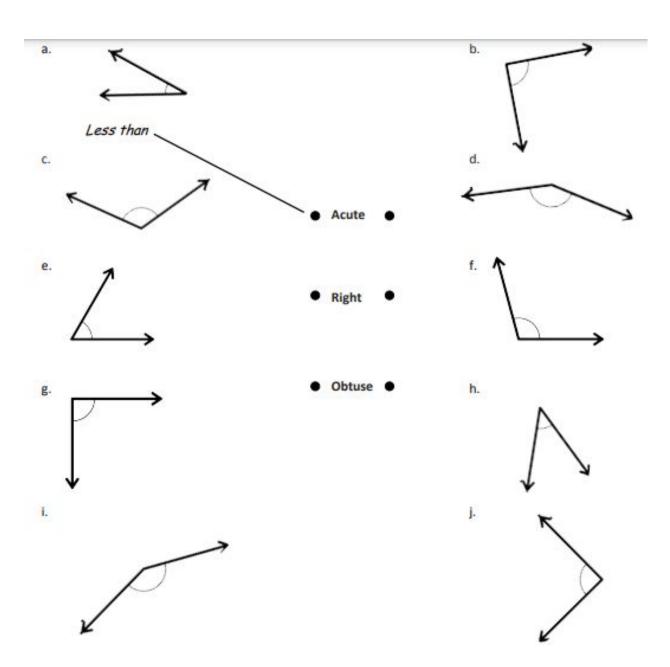
Monday

Date: February 1

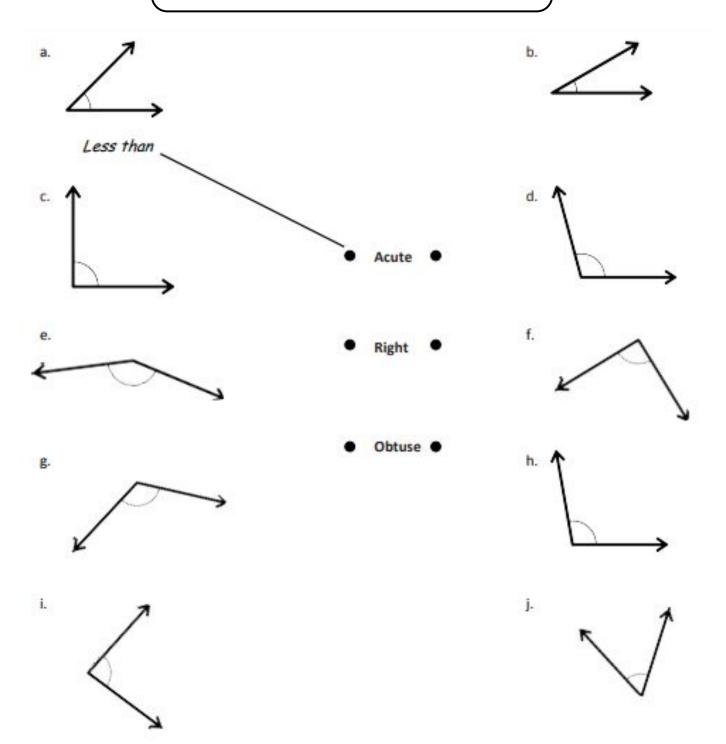
<u>Learning Target:</u> Use right angles to determine whether angles are equal to, greater than, or less than right angles. Draw right, obtuse, and acute angles.

Standards: 4.NBT.4 4.G.1

Do Now:


30 X 25	437 ÷ 3

Concept Development

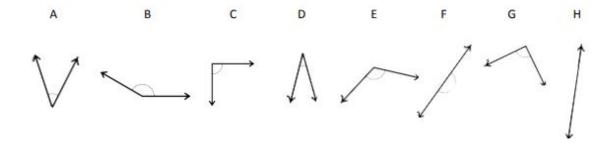

Note Catcher for Paper Folding Activity:
I wonder?
I notice:
<u>Vocabulary:</u>
Right Angle:
Acute Angle:
Obtuse Angle:
Straight Line:

Let's Work Together!

You Try!

Exp	nstruct each of the following using a straightedge and the right angle template that you created. plain the characteristics of each by comparing the angle to a right angle. Use the words greater than a strain, or equal to in your explanations.
a.	Acute angle
b.	Right angle
c.	Obtuse angle

EXIT TICKET


Name:	Date:
BCCSG	Howard / Spelman

<u>Learning Target:</u> Use right angles to determine whether angles are equal to, greater than, or less than right angles. Draw right, obtuse, and acute angles.

Standards: 4.NBT.4 4.G.1

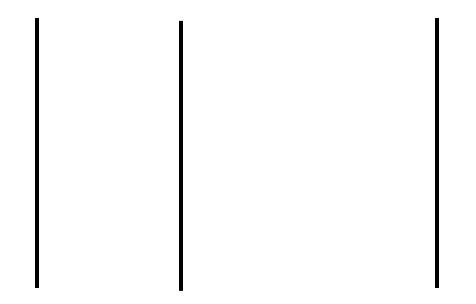
Directions: Answer the questions below. Make sure you show work for every question. Record your answer on Google Classroom

- 1. Fill in the blanks to make true statements using one of the following words: acute, obtuse, right, straight.
 - In class, we made a ______ angle when we folded paper twice.
 - An ______ angle is smaller than a right angle.
 - c. An _____ angle is larger than a right angle, but smaller than a straight angle.
 - 2. Use a right angle template to identify the angles below.

- a. Which angles are right angles?
- b. Which angles are obtuse angles? _____
- c. Which angles are acute angles?
- d. Which angles are straight angles?

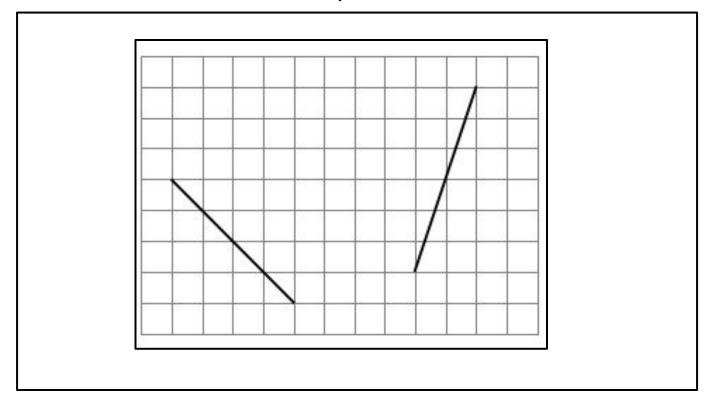
Grade:

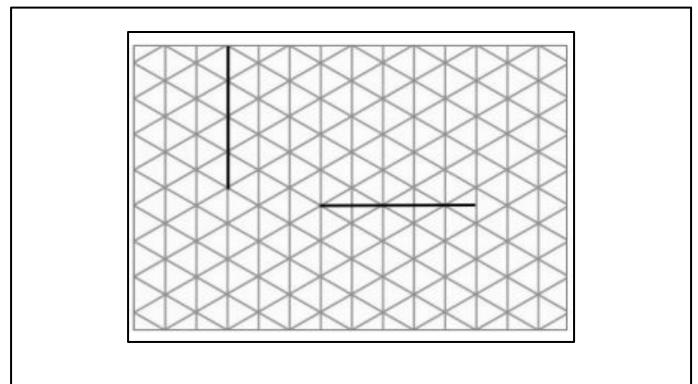
Tuesday

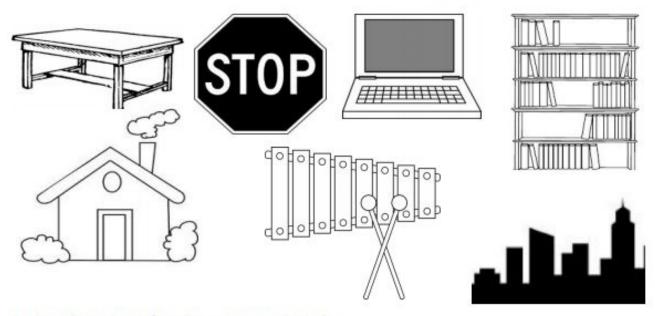

Date: February 2

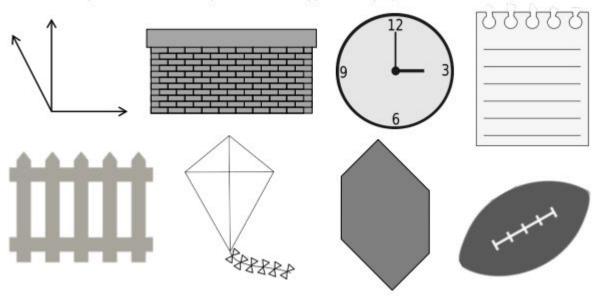
<u>Learning Target:</u> Identify, define, and draw perpendicular lines. Standards: 4.NBT.4 4.G.1
<u>Stanuaru</u> s. 4.101.4 4.0.1

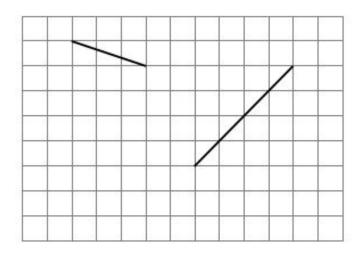
Do Now:

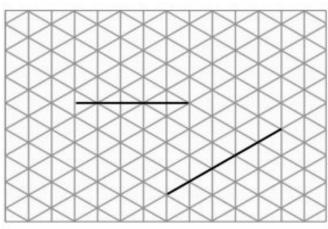

62 X 7	852 ÷ 2


Concept Development

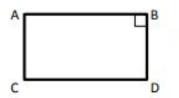

Let's Work Together!

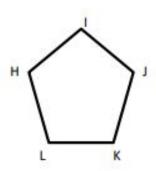

1. On each object, trace at least one pair of lines that appear to be perpendicular.


2. How do you know if two lines are perpendicular?

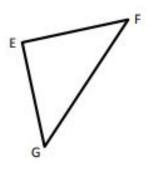

You Try!

1. On each object, trace at least one pair of lines that appear to be perpendicular.

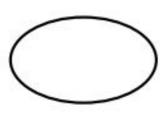

- 2. How do you know if two lines are perpendicular?
- In the square and triangular grids below, use the given segments in each grid to draw a segment that is perpendicular using a straightedge.



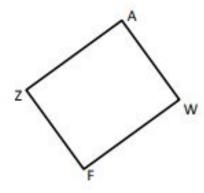
Use the right angle template that you created in class to determine which of the following figures have a
right angle. Mark each right angle with a small square. For each right angle you find, name the
corresponding pair of perpendicular sides. (Problem 4(a) has been started for you.)


a.

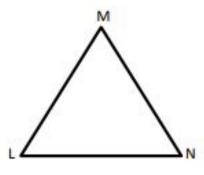
 $\overline{AB} \perp \overline{BD}$

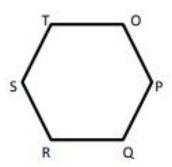


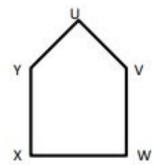
c.

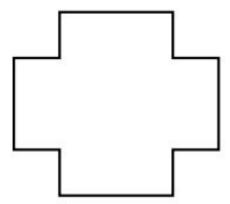


d.


b.


e.


f.


g.

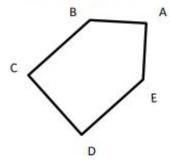
h.

5. Mark each right angle on the following figure with a small square. (Note: A right angle does not have to be inside the figure.) How many pairs of perpendicular sides does this figure have?

True or false? Shapes that have at least one right angle also have at least one pair of perpendicular sides. Explain your thinking.

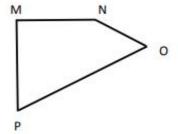
EXIT TICKET

Name:	Date:
BCCSG	Howard / Spelman


Learning Target: Identify, define, and draw perpendicular lines.

Standards: 4.NBT.4 4.G.1

Directions: Answer the questions below. Make sure you show work for every question. Record your answer on Google Classroom


Use a right angle template to measure the angles in the following figures. Mark each right angle with a small square. Then, name all pairs of perpendicular sides.

1.

BC ⊥ _____

2.

MN 1 _____

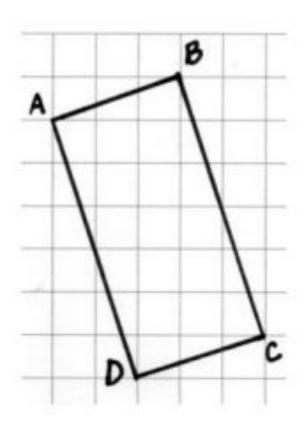
Wednesday

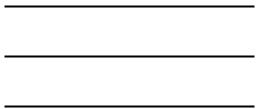
Date: February 3

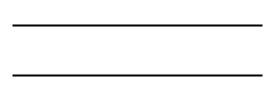
Learning Target: Identify, define, and draw parallel lines
Standards: 4.G.1

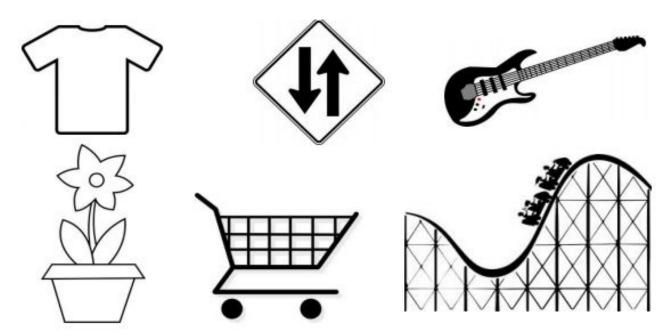
Do Now:

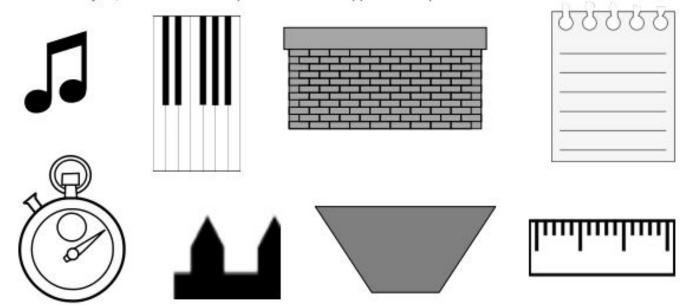
19 X 27	65 ÷ 4


Concept Development

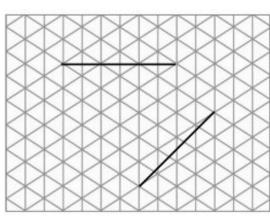

Parallel Lines with Popsicle Sticks


Parallel Lines:		

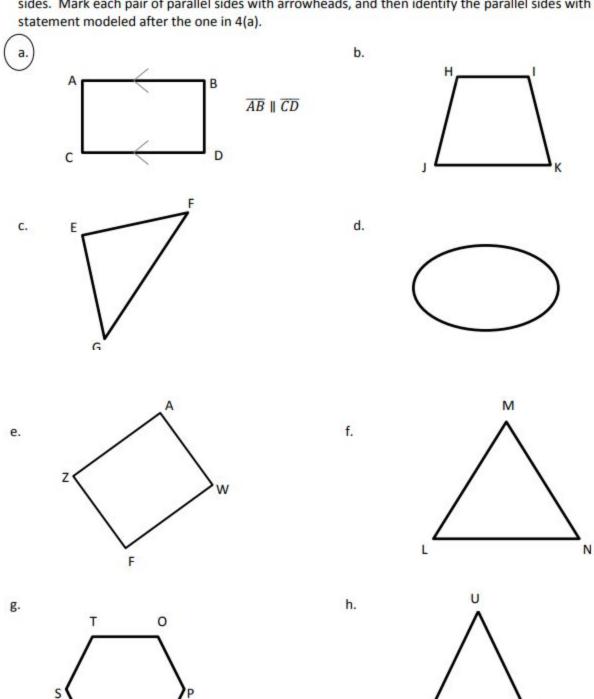

Let's Work Together!





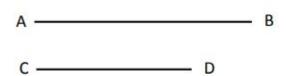

You Try!

1. On each object, trace at least one pair of lines that appear to be parallel.



- 2. How do you know if two lines are parallel?
 - 3. In the square and triangular grids below, use the given segments in each grid to draw a segment that is parallel using a straightedge.

4. Determine which of the following figures have sides that are parallel by using a straightedge and the right angle template that you created. Circle the letter of the shapes that have at least one pair of parallel sides. Mark each pair of parallel sides with arrowheads, and then identify the parallel sides with a statement modeled after the one in 4(a).



X

Q

5	True or false?	A triangle cannot	have sides that are	narallal	Explain your thinking.
J.	True of faise:	A triangle carriot	Have slues that are	paraller.	LADIAIII YOUI LIIIIIKIIIG.

6. Explain why \overline{AB} and \overline{CD} are parallel, but \overline{EF} and \overline{GH} are not.

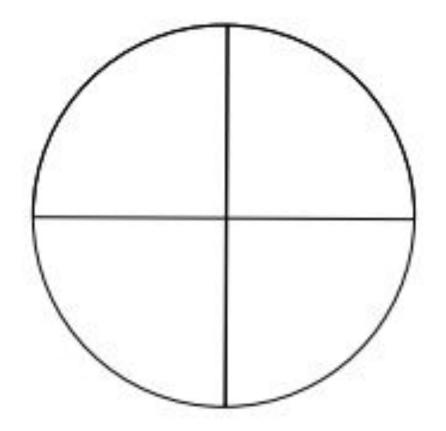
7. Draw a line using your straightedge. Now, use your right angle template and straightedge to construct a line parallel to the first line you drew.

EXIT TICKET

Name:BCCSG	Date: Howard / Spelman
<u>Learning Target:</u> Identify, define, an <u>Standards:</u> 4.G.1	nd draw parallel lines
Directions: Answer the questions beloquestion. Record your answer on Goo	ow. Make sure you show work for every ogle Classroom
Look at the following pairs of lines. Identify if the	ey are parallel, perpendicular, or intersecting.
1	2

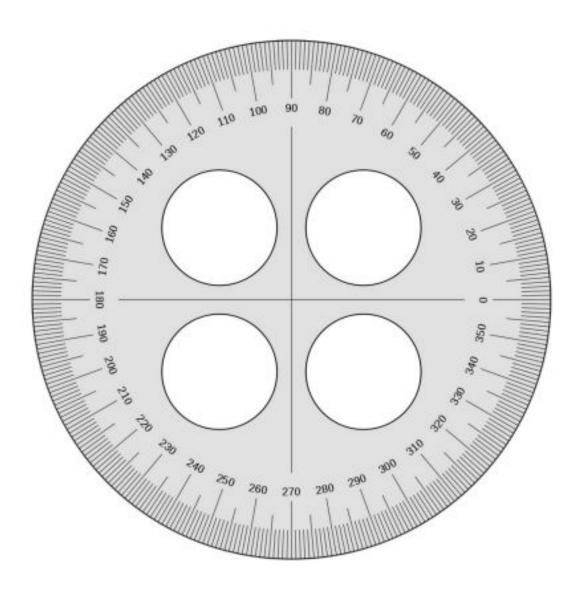
Grade:

Thursday


Date: February 4

<u>Learning Target:</u> Use a circular protractor to understand a 1-degree angle as 1/360 of a turn. Explore benchmark angles using the protractor. <u>Standards:</u> 4.G.1 4.NBT.6

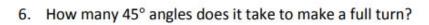
Do Now:


94 X 12	728 ÷ 4

Concept Development

Notes:		

Let's Work Together


You Try!

1. Make a list of the measures of the benchmark angles you drew, starting with Set A. Round each angle measure to the nearest 5°. Both sets have been started for you. a. Set A: 45°, 90°, b. Set B: 30°, 60°, 2. Circle any angle measures that appear on both lists. What do you notice about them? 3. List the angle measures from Problem 1 that are acute. Trace each angle with your finger as you say its measurement.

4. List the angle measures from Problem 1 that are obtuse. Trace each angle with your finger as you say its

measurement.

5.	We found out today that 1° is $\frac{1}{360}$ of a whole turn. It is 1 out of 360°. That means a 2° angle is $\frac{2}{360}$ of	a
	whole turn. What fraction of a whole turn is each of the benchmark angles you listed in Problem 1?	

7. How many 30° angles does it take to make a full turn?

8. If you didn't have a protractor, how could you reconstruct a quarter of it from 0° to 90°?

EXIT TICKET

EAH HUKEI			
	ame:CCSG	Date: Howard / Spelman	
a	<u>Learning Target:</u> Use a circular protractor to understand a 1-degree angle as 1/360 of a turn. Explore benchmark angles using the protractor. <u>Standards:</u> 4.G.1 4.NBT.6		
	ections: Answer the questions estion. Record your answer on	below. Make sure you show work for every Google Classroom	
1.	How many right angles make	a full turn?	
2.	What is the measurement of	a right angle?	
3.	What fraction of a full turn is	s 1°?	

Friday

Date: February 5

<u>Learning Target:</u> Use varied protractors to distinguish angle measure from length measurement.

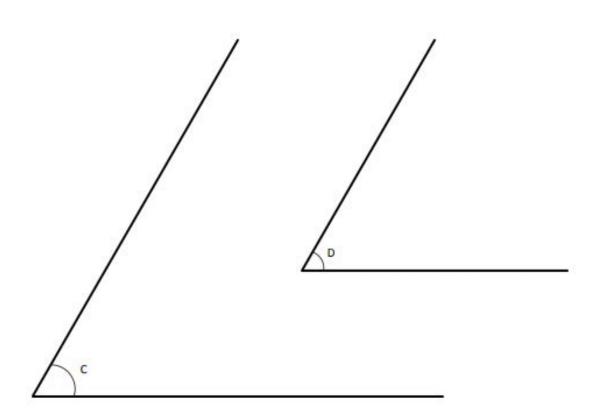
Standards: 4.G.1

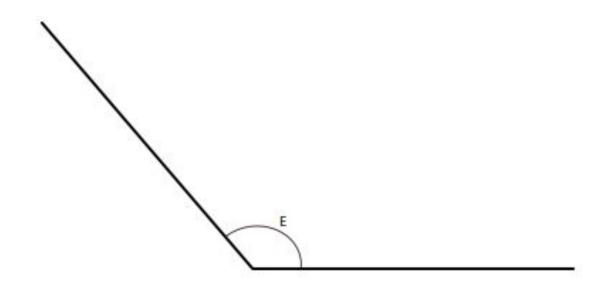
Do Now:

81 X 39	651 ÷ 7

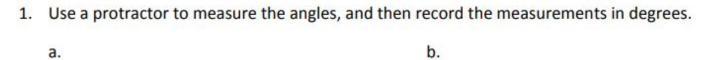
Concept Development

Angle Measurement versus Length Measurement


Note Catcher:



I wonder?

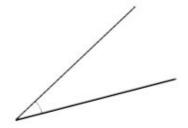

I notice:

Let's Work Together!

You Try!

c. d.

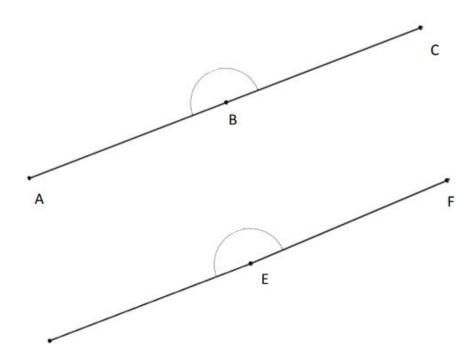
f. e. h. g. j. i.


a. Use three different-size protractors to measure the angle. Extend the lines as needed using a straightedge.

Protractor #1: _____°

Protractor #2: _____°

Protractor #3: _____o


D

b. What do you notice about the measurement of the above angle using each of the protractors?

3. Use a protractor to measure each angle. Extend the length of the segments as needed. When you extend the segments, does the angle measure stay the same? Explain how you know.

a.

b.

EXIT TICKET		
Name:BCCSG	Date: Howard / Spelman	
Learning Target: Use we from length measurements Standards: 4.G.1	varied protractors to distinguish angle measure nt.	
Directions: Answer the que question. Record your answ	stions below. Make sure you show work for every ver on Google Classroom	
Use any protractor to measure	the angles, and then record the measurements in degrees.	
1.	2.	
3.	4.	