Brighter Choice
Name

$3^{\text {rd }}$ Grade Math (Modified ESL) Remote Learning Packet

Week 27

Dear Educator,
My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

LEQ: How can I recognize and show that equivalent fractions have the same size, though not necessarily the same shape?

Objective: I can use my understanding of equal parts within a shape to recognize and show that equivalent fractions have the same size, though not necessarily the same shape.

Name: \qquad
BCCS-B

Week 27 Day 1 Date: \qquad
Yale
Princeton

Do Now:

Circle 1
Circle 1
Step 1: Shade one-third of circle 1.
Step 2: Shade five-sixths of circle 2.
Step 3: Write the larger fraction below.
Circle 1
Step 1: Shade two-eighths of circle 1.
Step 2: Shade three-sixths of circle 2.
Step 3: Write the larger fraction below.

Name: \qquad
BCCS-B Input (My Turn):

1. Label what fraction of each shape is shaded. Then, circle the fractions that are equal.
a.

Name: \qquad BCCS-B

Problem Set (Your Turn):

1. Label what fraction of each shape is shaded. Then, circle the fractions that are equal.

Week 27 Day 1 Date: \qquad Harvard Yale Princeton
\qquad
b.

Name: \qquad
BCCS-B

Week 27 Day 1 Date: \qquad Harvard

Yale
Princeton

Input (My Turn):

2. Label the shaded fraction. Draw 2 different representations of the same fractional amount.
a.

b.

Problem Set (Your Turn):

2. Label the shaded fraction. Draw 2 different representations of the same fractional amount.
a.

b.

Name: \qquad
BCCS-B

Week 27 Day 1 Date: Harvard Yale Princeton

Input (My Turn):

4. Mrs. Page has 2 different containers that hold exactly 1 liter. She pours $\frac{1}{2}$ liter of blue liquid into Container A. She pours $\frac{1}{2}$ liter of orange liquid into Container B. Kenny says the amounts are not equal. Xaiden says they are. Explain who you think is correct and why.

Problem Set (Your Turn):

4. Mrs. Blomgren has 2 different bottles that hold exactly 1 liter. She pours $\frac{2}{3}$ liter of green liquid into Bottle A. She pours $\frac{2}{3}$ liter of red liquid into Bottle B. Ahmed says the amounts are not equal. Messiah says they are. Explain who you think is correct and why.

A

Name: \qquad
\qquad

Application:

Myson has 6 small square pieces of paper. 2 squares are grey. Myson cuts the 2 grey squares in half with a diagonal line from one corner to the other.

a. What shapes does he have now?
b. How many of each shape does he have?
c. Use all the shapes with no overlaps. Draw at least 2 different ways Ann's set of shapes might look. What fraction of the figure is grey?

Name: \qquad
BCCS-B

Exit Ticket:

1. Label what fraction of the figure is shaded. Then, circle the fractions that are equal.

Week 27 Day 1 Date: \qquad
Harvard

Yale
Princeton
\square

2. Label the shaded fraction. Draw 2 different representations of the same fractional amount.
a.

b.

Name: \qquad
BCCS-B

Week 27 Day 1 Date: \qquad
Harvard
Yale
Princeton

Homework:

1. Label the shaded fraction. Draw 2 different representations of the same fractional amount.

2. These two shapes both show $\frac{4}{5}$.

a. Are the shapes equivalent? Why or why not?
b. Draw two different representations of $\frac{4}{5}$ that are equivalent.
3. Diana ran a quarter mile straight down the street. Becky ran a quarter mile on a track. Who ran more? Explain your thinking.

Diana \qquad

Becky

LEQ: How can I recognize and show that equivalent fractions refer to the same point on the number line?

Objective: I can draw a number line and plot equivalent fractions to show that they have the same point on the number line.

Name: \qquad Week 27 Day 2 Date: \qquad
BCCS-B
Harvard
Yale
Do Now:
Fraction Number Bonds

Complete each number bond.
a.

c.

e.

b.

d.

f.

Name: \qquad
BCCS-B

Input (My Turn):

1. Use the fractional units on the left to count up on the number line. Label the missing fractions on the blanks.

2. Use the number lines above to:

- Put a circle around fractions equal to 1 half

- Put a square around fractions equal to 1 \square
- Put a triangle around fractions equal to 3 halves \square
- Put a start next to fractions equal to 2

3. Use the number lines above to make the number sentences true.

Name: \qquad
BCCS-B
Week 27 Day 2 Date: \qquad

Problem Set (Your Turn):

1. Use the fractional units on the left to count up on the number line. Label the missing fractions on the blanks.

thirds

sixths
2. Use the number lines above to:

- Put a circle around fractions equal to 1
- Put a square around fractions equal to 2 fourths \square
- Put a triangle around fractions equal to 2

- Put a start next to fractions equal to 5 thirds

Write two pairs of fractions that are equivalent.
\qquad $=$ \qquad
\qquad $=$ \qquad

Name: \qquad BCCS-B

Week 27 Day 2 Date:
Harvard Yale

Problem Set (Your Turn):

2. Use the number lines on the previous page to make the number sentences true.

$$
\frac{1}{4}=\frac{\square}{8} \quad \frac{6}{4}=\frac{12}{\square} \quad \frac{2}{3}=\frac{\square}{6}
$$

$$
\frac{6}{3}=\frac{12}{\square} \quad \frac{3}{3}=\frac{\square}{6} \quad 2=\frac{8}{4}=\frac{\square}{8}
$$

Name: \qquad
\qquad
BCCS-B Harvard Yale

Princeton

Application:

Dorothea is training to run a 2-mile race. She marks off her starting point and the finish line. To track her progress, she places a mark at 1 mile. She then places a mark halfway between her starting position and 1 mile, and another mark halfway between 1 mile and the finish line.
a. Draw and label a number line to show the points Dorothea marks along her run.
b. What fractional unit does Dorothea make as she marks the points on her run?
c. What fraction of her run has she completed when she reaches the third marker?

Name: \qquad BCCS-B

Week 27 Day 2 Date:
Harvard Yale
\qquad

Exit Ticket:

Saveon went home after school and told his mother that 1 whole is the same as $\frac{2}{2}$ and $\frac{6}{6}$. His mother asked why, but Saveon couldn't explain. Use a number line and words to help him show and explain why $1=\frac{2}{2}=\frac{6}{6}$.

Name: \qquad
BCCS-B

Homework:

1. Jack and Jill use rain gauges the same size and shape to measure rain on the top of a hill. Jack uses a rain gauge marked in fourths of an inch. Jill's gauge measures rain in eighths of an inch. On Thursday, Jack's gauge measured $\frac{2}{4}$ inches of rain. They both had the same amount of water, so what was the reading on Jill's gauge Thursday? Draw a number line to help explain your thinking.

LEQ: How can I generate simple equivalent fractions?

Objective: I can generate simple equivalent fractions by using visual fraction models and the number line.

Name: \qquad BCCS-B

Week 27 Day 3 Date: \qquad
Harvard
Yale
Princeton

Do Now:
Match the pictures the halves or quarters with their wholes. Then complete the shape to recreate the whole again.
1.)

a.

Quarter

2.)

b.

Half
3.)

c.

Quarter

Half

Name: \qquad
BCCS-B

Input (My Turn):

---- label the unit fraction for each strip
_ shade $\frac{2}{3}, \frac{4}{6}$, and $\frac{8}{12}$

$\frac{2}{3}, \frac{4}{6}$, and $\frac{8}{12}$ are \qquad fractions. As the number of shaded parts and total number of parts double, each equal part on the fraction strip doubles.

What other fractions are equivalent?

$\overline{2}=\frac{}{4}=\frac{}{6}=\frac{}{8}$

Name: \qquad BCCS-B

Input (My Turn):

1. Write the shaded fraction of each figure on the blank. Then, draw a line to match the equivalent fractions.

Week 27 Day 3 Date: \qquad
Harvard
Yale
Princeton

Name: \qquad BCCS-B

Problem Set (Your Turn):

1. Write the shaded fraction of each figure on the blank. Then, draw a line to match the equivalent fractions.

\qquad

\qquad

\qquad

\qquad

Name: \qquad
\qquad
BCCS-B

Input (My Turn):

1. Draw and label two models that show $1 / 2=2 / 4$
\square
2. Draw a number line that proves your thinking about Problem 1.

Problem Set (Your Turn):

1. Draw and label two models that show $1 / 2=3 / 4$.
\square
2. Draw a number line that proves your thinking about Problem 1.

Name: \qquad
BCCS-B

Exit Ticket:

1. Draw and label two models that show $1 / 2=4 / 8$
2. Draw a number line that proves your thinking about Problem 1.

Name: \qquad BCCS-B

Week 27 Day 3 Date: \qquad
Harvard
Yale
Princeton

Homework:

1. Complete the fractions to make true statements.

$$
\frac{1}{2}=\underline{4} \quad \frac{3}{5}=\overline{10} \quad \frac{3}{9}=\underline{6}
$$

2. How many ninths does it take to make the same amount as $\frac{1}{3}$? Explain your answer in words and pictures.

3. A pie was cut into 8 equal slices. If Ruben ate $\frac{3}{4}$ of the pie, how many slices did he eat? Explain your answer using a number line and words.

LEQ: How can I generate simple equivalent fractions?

Objective: I can generate simple equivalent fractions by using visual fraction models and the number line.

Name: \qquad BCCS-B

Week 27 Day 4 Date: \qquad Harvard

Yale
Princeton

Do Now:

Name: \qquad BCCS-B

Input (My Turn):

1. On the number line above, divide each whole into fourths, and label each fraction above the line. Use a fraction strip to help you estimate, if necessary.
2. On the number line above, divide each whole into eighths, and label each fraction below the line. Refold your fraction strip from Problem 1 to help you estimate.
3. List the fractions that name the same place on the number line.

Name: \qquad BCCS-B

Problem Set (Your Turn):

1. On the number line above, divide each whole into thirds and label each fraction above the line.
2. On the number line above, divide each whole into sixths and label each fraction below the line.
3. Write the fractions that name the same place on the number line.

Name: \qquad
BCCS-B

Input (My Turn):

Week 27 Day 4 Date: Harvard Yale
\qquad Yale Princeton
4. Write two different fractions for the dot on the number line. You may use halves, thirds, fourths, fifths, sixths, or eighths.

\qquad

\qquad

\qquad

Name: \qquad
BCCS-B

Week 27 Day 4 Date: \qquad Harvard

Yale
Princeton

Problem Set (Your Turn):

4. Write two different fraction names for the dot on the number line. You may use halves, thirds, fourths, fifths, sixths, eighths, or tenths.

\qquad

\qquad $=$ \qquad

\qquad
$=$

\qquad
\qquad

Application:

Davelle and Jaylan each ordered a large pizza for dinner. Davelle's pizza was cut into sixths, and Jaylan's pizza was cut into twelfths. Davelle ate 2 sixths of his pizza. If Jaylan wants to eat the same amount of pizza as Davelle, how many slices of pizza will he have to eat? Write the answer as a fraction. Draw a number line to explain your answer.

Jaylan

Name: \qquad BCCS-B

Week 27 Day 4 Date: Harvard

Yale
\qquad Princeton

Exit Ticket:

Justin and Jamell were in a pie-eating contest. The pies were cut either into thirds or sixths. Justin picked up a pie cut into sixths and ate $\frac{4}{6}$ of it in 1 minute. Jamell picked up a pie cut into thirds. What fraction of his pie does Jamell have to eat in 1 minute to tie with Justin? Use the number line to explain your answer.

Name: \qquad
BCCS-B
\qquad

Homework:

Equivalent Fractions

Match the fractions on the left with equivalent fractions on the right. Write the correct letters on the lines.

a. $\frac{6}{16}$

2

b. $\circlearrowleft \frac{4}{4}$
c. $\because \frac{6}{8}$

6.
 7.

e. $\because \frac{4}{10}$
f.
g.

Circle the three fractions below that are equal.

$\frac{4}{6}$

$\frac{3}{6}$

$\frac{6}{9}$

LEQ: How can I express whole numbers as fractions and recognize equivalence with different units?

Objective: I can use division and skip count to express whole numbers as fractions and recognize equivalence with different units.

Name: \qquad
BCCS-B
Do Now:
Week 27 Day 5 Date:
Harvard

Yale
Princeton
\qquad

Missing Fractions

Write the missing fractions in each number line.
1)

2)

3)

4)

5)

6)

Name: \qquad BCCS-B

Week 27 Day 5 Date:
Harvard Yale

Input (My Turn):

1. Complete the number bond as indicated by the fractional unit. Partition the number line into the given fractional unit, and label the fractions. Rename $\mathbf{0}$ and 1 as fractions of the given unit. The first one is done for you.
Halves

$\frac{0}{2}$
$\frac{1}{2}$
$\frac{2}{2}$

Name: \qquad BCCS-B

Problem Set (Your Turn):

1. Complete the number bond as indicated by the fractional unit. Partition the number line into the given fractional unit, and label the fractions. Rename 0 and 1 as fractions of the given unit.

Sevenths

Eighths

Name: \qquad
BCCS-B

Week 27 Day 5 Date: \qquad Harvard Yale

Princeton

Input (My Turn):

1. Complete the number bond as indicated by the fractional unit. Partition the number line into the given fractional unit, and label the fractions. Rename 0 and 1 as fractions of the given unit.

How many copies of $\frac{1}{5}$ does it take to make 1 whole? What's the fraction for 1 whole in this case? Use the number line or the number bond in Problem 1 to help you explain.

It takes \qquad copies of $\frac{1}{5}$ to make 1 whole. I know this because \qquad
\qquad
\qquad
\qquad
\qquad

Name: \qquad
BCCS-B
\qquad Harvard Yale Princeton

Problem Set (Your Turn):

1. Complete the number bond as indicated by the fractional unit. Partition the number line into the given fractional unit, and label the fractions. Rename 0 and 1 as fractions of the given unit.

How many copies of $\frac{1}{8}$ does it take to make 1 whole? What's the fraction for 1 whole in this case? Use the number line or the number bond in Problem 1 to help you explain.

It takes \qquad copies of $\frac{1}{8}$ to make 1 whole. I know this because \qquad
\qquad
\qquad
\qquad
\qquad

Name: \qquad BCCS-B
\qquad

Application:

1. Ahmed took his little sister to get pizza. Each person ordered a small pizza. Ahmed's pizza was cut in fourths, and his sister's was cut in thirds. After they had both eaten all of their pizza, Ahmed's little sister said, "Hey that was no fair! You got more than me! You got 4 pieces, and I only got 3."

Should Ahmed's little sister be mad? What could you say to explain the situation to her? Use words, pictures, or a number line.

Name: \qquad
BCCS-B

Week 27 Day 5 Date:
Harvard Yale

Princeton

Exit Ticket:

1. Complete the number bond as indicated by the fractional unit. Partition the number line into the given fractional unit, and label the fractions. Rename 0 and 1 as fractions of the given unit.

2. How many copies of $\frac{1}{4}$ does it take to make 1 whole? What's the fraction for 1 whole in this case? Use the number line or the number bond in Problem 1 to help you explain.

It takes \qquad copies of $\frac{1}{4}$ to make 1 whole. I know this because \qquad
\qquad
\qquad
\qquad
\qquad

Brighter Choice
Name

$3^{\text {rd }}$ Grade Math (Modified ESL) Remote Learning Packet

Week 28

Dear Educator,
My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

LEQ: How can I express whole number fractions on the number line when the unit interval is 1 ?

Objective: I can place equally spaced tick marks based on the fractional unit on the number line to express whole number fractions.

Name: \qquad BCCS-B

Week 28 Day 1 Date: \qquad

Do Now:

Equivalent Fractions

Equivalent fractions have the same value, even though they use different numbers.
Directions: Fill in the equivalent fractions below.

Name: \qquad BCCS-B

Input (My Turn):
How many parts make a whole?

Week 28 Day 1 Date:
Harvard Yale
thirds

halves

wholes

Let's partition Model 1 into thirds, Model 2 into halves, and Model $\mathbf{3}$ into wholes.

Name: \qquad
BCCS-B

Input (My Turn):

1. Label the following models as fractions inside the boxes.

\square

Name: \qquad BCCS-B

Problem Set (Your Turn):

1. Label the following models as fractions inside the boxes.

Name: \qquad
BCCS-B

Week 28 Day 1 Date: \qquad Harvard

Yale
Princeton

Input (My Turn):

2. Fill in the missing whole numbers in the boxes below the number line. Rename the wholes as fractions in the boxes above the number line.

3. Explain the difference between these two fractions with words and pictures.

$$
\begin{array}{ll}
\frac{2}{1} & \frac{2}{2}
\end{array}
$$

Name: \qquad
BCCS-B

Week 28 Day 1 Date: \qquad
Harvard
Yale
Princeton

Problem Set (Your Turn):

2. Fill in the missing whole numbers in the boxes below the number line. Rename the wholes as fractions in the boxes above the number line.

3. Explain the difference between these fractions with words and pictures.

\qquad
\qquad

Application:

Mrs. Mclean drinks 1 eighth gallon of milk every morning.
a. How many days will it take Mrs. Mclean to drink 1 gallon of milk? Use a number line and words to explain your answer.

It will take Mrs. Mclean
days to drink I gallon of milk.
b. How many days will it take Mrs. Mclean to drink 2 gallons? Extend your number line to show 2 gallons, and use words to explain your answer.

Name: \qquad
BCCS-B

Exit Ticket:

1. Label the model as a fraction inside the box.

2. Partition the wholes into thirds. Rename the fraction for 3 wholes. Use the number line and words to explain your answer.

Name: \qquad
BCCS-B

Week 28 Day 1 Date: \qquad
Harvard Yale Princeton

Homework:

1. Label the model as a fraction inside the box.

2. Partition the wholes into fifths. Rename the fraction for 5 wholes. Use the number line and words to explain your answer.

LEQ: How can I decompose whole number fractions greater than 1 ?

Objective: I can use whole number equivalence models to decompose number fractions greater than 1.

Name: \qquad
BCCS-B

Week 28 Day 2 Date: \qquad
Harvard Yale
Princeton

Do Now:

Understanding $\frac{1}{2}$

Color $\frac{1}{2}$ of the stars.
What fraction of the stars did you color?

$$
\overline{10}=\frac{1}{2}
$$

Color $\frac{1}{2}$ of the hearts.

What fraction of the hearts did you color?
$\overline{12}=\frac{1}{2}$

Color $\frac{1}{2}$ of the circles.

Color $\frac{1}{2}$ of the clubs.

What fraction of the circles did you color?

$$
\overline{8}=\frac{1}{2}
$$

What fraction of the clubs did you color?
$\overline{14}=\frac{1}{2}$

Name: \qquad BCCS-B

Input (My Turn):

Week 28 Day 2 Date: Harvard Yale

Image 2

Rewrite the parts of the number in terms of fourths.

Name: \qquad
BCCS-B

Input (My Turn):

1. Partition the number line to show the fractional units. Then, draw number bonds using copies of 1 whole for the circled whole numbers.
$0=$ \qquad halves

$$
0=\frac{\square}{2}
$$

$1=$ \qquad halves

$$
1=\frac{\square}{2}
$$

$$
2=\frac{4}{2}
$$

$2=$ \qquad thirds
$3=$ \qquad thirds
$3=\frac{\square}{3}$
$4=$ \qquad thirds

$$
2=\frac{3}{3}
$$

$4=\frac{\square}{3}$

Name: \qquad
BCCS-B

Problem Set (Your Turn):

\qquad

1. Partition the number line to show the fractional units. Then, draw number bonds with copies of 1 whole for the circled whole numbers.

$0=$ \qquad sixths
$1=$ \qquad sixths
$2=$ \qquad sixths

$$
0=\frac{\vdots}{6}
$$

$$
1=\frac{\square}{6}
$$

$$
2=\frac{12}{6}
$$

Fifths

$$
2=
$$

\qquad fifths

$$
2=\frac{\vdots}{5}
$$

$3=$ \qquad fifths
$4=$ \qquad fifths
$3=\frac{\square}{5}$
$4=\frac{\square}{5}$

Name: \qquad
BCCS-B

Week 28 Day 2 Date: \qquad Harvard

Yale
Princeton

Input (My Turn):

2. Write the fractions that name the whole numbers for each fractional unit.

Halves	$\frac{4}{2}$	$\frac{6}{2}$	$\frac{8}{2}$
Thirds			
Fourths			
Sixths			

Problem Set (Your Turn):

2. Write the fractions that name the whole numbers for each fractional unit

Thirds	$\frac{6}{3}$	$\frac{9}{3}$	$\frac{12}{3}$
Sevenths			
Eighths			
Tenths			

Name: \qquad BCCS-B
\qquad

Harvard

Yale
Princeton

Application:

Prince works on his project for 4 thirds hours. His mom tells him that he must spend another 2 thirds of an hour on it. Draw a number bond and number line with copies of thirds to show how long Prince needs to work altogether. Write the amount of time Prince needs to work altogether as a whole number.

Name: \qquad BCCS-B

Exit Ticket:

Jessie has 2 yards of fabric into pieces of $\frac{1}{5}$ yard in length. Partition the number line to show her cuts.

How many $\frac{1}{5}$-yard pieces does she cut altogether?

Name: \qquad
BCCS-B

Week 28 Day 2 Date: \qquad Harvard Yale Princeton

Homework:

1. Partition the number line to show the fractional units. Then, draw number bonds using copies of 1 whole for the circled whole numbers.

2. Jordan has $\mathbf{2}$ feet of string into pieces of $\frac{1}{3}$ yard in length. Partition the number line to show her cuts.

How many $\frac{1}{3}$-yard pieces does she cut altogether?

LEQ: How can I explain equivalence?

Objective: I can explain equivalence by using visual fraction models and the number line.

Name: \qquad

Week 28 Day 3 Date: \qquad Harvard Yale Princeton

Do Now:

Comparing Fractions

Use $<,>$, or $=$ to compare each pair of fractions. Use your fraction strips to help you.
a.

b.

c.

d.

e.

f.

g.

$$
\frac{2}{6}-\frac{2}{3}
$$

h.

Name: \qquad
BCCS-B

Week 28 Day 3 Date:
Harvard
Yale
Princeton

Input (My Turn):

1. Use the pictures to model equivalent fractions. Fill in the blanks, and answer the questions.

4 sixths is equal to \qquad thirds.

$$
\frac{4}{6}=\frac{\vdots}{3}
$$

The whole stays the same.

What happened to the size of the equal parts when there were fewer equal parts?

What happened to the number of equal parts when the equal parts became larger?

1 half is equal to \qquad eighths.

$$
\frac{1}{2}=\frac{\square}{8}
$$

The whole stays the same.

What happened to the size of the equal parts when there were more equal parts?

What happened to the number of equal parts when the equal parts became smaller?

Name: \qquad
BCCS-B

Week 28 Day 3 Date:
Harvard
Yale
\qquad
Princeton

Problem Set (Your Turn):

1. Use the pictures to model equivalent fractions. Fill in the blanks, and answer the questions.

2 sixths is equal to \qquad third.

$$
\frac{2}{6}=\frac{\vdots}{3}
$$

The whole stays the same.

What happened to the size of the equal parts when there were fewer equal parts?

What happened to the number of equal parts when the equal parts became larger?

1 half is equal to \qquad tenths.

$$
\frac{1}{2}=\frac{\square}{10}
$$

The whole stays the same.

What happened to the size of the equal parts when there were more equal parts?

What happened to the number of equal parts when the equal parts became smaller?

Name:
BCCS-B
Input (My Turn):

Week 28 Day 3 Date:
Harvard Yale
\qquad

1. When the whole is the same, why does it take $\mathbf{6}$ copies of 1 eighth to equal $\mathbf{3}$ copies of 1 fourth? Draw a model to support your answer.
2. When the whole is the same, how many sixths does it take to equal 1 third? Draw a model to support your answer.

Name: \qquad
BCCS-B

Week 28 Day 3 Date: Harvard Yale Princeton

Problem Set (Your Turn):

1. When the whole is the same, why does it take $\mathbf{4}$ copies of $\mathbf{1}$ sixth to equal $\mathbf{2}$ copies of $\mathbf{1}$ third? Draw a model to support your answer.
2. When the whole is the same, how many eighths does it take to equal 1 fourth? Draw a model to support your answer.

Name: \qquad BCCS-B
\qquad

Application:

You have a magic wand that doubles the number of equal parts but keeps the whole the same size. Use your magic wand. In the space below, draw to show what happens to a rectangle that is partitioned in fourths after you tap it with your wand. Use words and numbers to explain what happened.

Name: \qquad
BCCS-B

Week 28 Day 3 Date: \qquad Harvard Yale

Princeton

Exit Ticket:

1. When the whole is the same, why does it take 3 copies of 1 sixth to equal 1 copy of 1 half? Draw a model to support your answer.
2. Use the pictures to model equivalent fractions. Fill in the blanks, and answer the questions.

6 sixths is equal to \qquad thirds.

$$
\frac{6}{6}=\frac{\square}{3}
$$

Name: \qquad
BCCS-B
\qquad

Homework:

1. Use the pictures to model equivalent fractions. Fill in the blanks, and answer the questions.

2 tenths is equal to \qquad fifths.

$$
\frac{2}{10}=\frac{}{5}
$$

The whole stays the same.

What happened to the size of the equal parts when there were fewer equal parts?

1 third is equal to \qquad ninths.

$$
\frac{1}{3}=\frac{}{9}
$$

The whole stays the same.

What happened to the size of the equal parts when there were more equal parts?
2. $\mathbf{8}$ students share $\mathbf{2}$ pizzas that are the same size, which are represented by the $\mathbf{2}$ circles below. They notice that the first pizza is cut into 4 equal slices, and the second is cut into 8 equal slices. How can the 8 students share the pizzas equally without cutting any of the pieces?

LEQ: How can I compare unit fractions with different sized models representing the whole?

Objective: I can reason about the size of individual models to compare unit fractions with different sized models representing the whole.

Name: \qquad

Week 28 Day 4 Date:
Harvard
Yale
Princeton

Do Now:

Fractions

$\frac{1}{2}$
$\frac{1}{3}$
$\frac{2}{3}$
$\frac{1}{4}$
$\frac{2}{4}$
$\frac{3}{4}$
one-half one-third two-thirds one-fourth two-fourths three-fourths
Write the fraction for each colored area in numbers and in words.

Circle the correct answer.
A pizza is cut into 4 even pieces. Tim eats 3 pieces. What fraction of the pizza did he eat?

I have 5 robots. 2 of them are red and the rest are blue. What fraction of the robots are red?
$\frac{1}{3} \quad \frac{3}{4} \quad \frac{4}{3}$
$\frac{2}{5} \quad \frac{2}{3} \quad \frac{1}{2}$

Name: \qquad BCCS-B

Input (My Turn):

Label the unit fraction. In each blank, draw and label the same whole with a shaded unit fraction that makes the sentence true. There is more than 1 correct way to make the sentence true.

Name: \qquad BCCS-B

Problem Set (Your Turn):

Label the unit fraction. In each blank, draw and label the same whole with a shaded unit fraction that makes the sentence true. There is more than 1 correct way to make the sentence true.
2.

Name: \qquad
BCCS-B

Week 28 Day 4 Date: \qquad Harvard Yale

Princeton

Input (My Turn):

8. Fill in the blank with a fraction to make the statement true, and draw a matching model.

9. Mr. Stallings ate $\frac{1}{2}$ of a small brownie. Mr. Moore ate $\frac{1}{4}$ of a large brownie. Who ate more? Use words and pictures to explain your answer.
\qquad
\qquad
\qquad

Name: \qquad
BCCS-B

Week 28 Day 4 Date: \qquad
Harvard Yale Princeton

Problem Set (Your Turn):

8. Fill in the blank with a fraction to make the statement true, and draw a matching model.

9. Mrs. Mclean ate $\frac{1}{3}$ of a small candy bar. Mr. Moore ate $\frac{1}{4}$ of a large candy bar. Who ate more? Use words and pictures to explain your answer.
\qquad
\qquad
\qquad

Name: \qquad
\qquad

Application:

Rachel, Silvia, and Lola each received the same homework assignment and only completed part of it. Rachel completed $1 / 6$ of her homework, Silvia completed $1 / 2$ of her homework, and Lola completed $1 / 4$ of her homework. Write the amount of homework each girl completed from least to greatest. Draw a picture to prove your answer.

Name: \qquad
BCCS-B

Exit Ticket:

1. Fill in the blank with a fraction to make the statement true. Draw a matching model.

2. Tatiana ate $\frac{1}{2}$ of a small carrot. Louis ate $\frac{1}{4}$ of a large carrot. Who ate more? Use words and pictures to explain your answer.

Brighter Choice
Name Charter School for Boys

$3^{\text {rd }}$ Grade Math (Modified ESL) Remote Learning Packet

Week 29

Dear Educator,
My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

Name: \qquad BCCS-B

Week 29 Day 1 Date: \qquad
Harvard
Yale
Princeton

Divide each shape into the number of equal parts shown. Remember, all parts must be identical!

halves (2 parts)
thirds (3 parts)

quarters (4 parts)

eights (8 parts)

fifths (5 parts)

Name: \qquad BCCS-B What fraction of the shape is shaded? Circle the correct answer.

$\frac{8}{1} \quad \frac{8}{7} \quad \frac{1}{8}$	$\frac{1}{12} \quad \frac{12}{1} \quad \frac{10}{11}$	$\begin{array}{lll}\frac{1}{9} & \frac{1}{10} & \frac{10}{1}\end{array}$
$\begin{array}{lll} \frac{3}{1} & \frac{1}{3} & \frac{1}{2} \end{array}$	$\begin{array}{lll} \frac{4}{3} & \frac{1}{4} & \frac{3}{4} \end{array}$	$\begin{array}{lll} \frac{2}{3} & \frac{5}{3} & \frac{3}{5} \end{array}$
$\begin{array}{lll} \hline \frac{2}{4} & \frac{1}{4} & \frac{4}{2} \end{array}$	$\begin{array}{lll} \frac{6}{3} & \frac{3}{6} & \frac{2}{3} \end{array}$	$\begin{array}{lll}\frac{7}{16} & \frac{16}{9} & \frac{9}{16}\end{array}$
$\begin{array}{lll} \hline \frac{3}{5} & \frac{2}{5} & \frac{5}{2} \end{array}$	$\begin{array}{lll} \hline \frac{5}{8} & \frac{8}{5} & \frac{3}{5} \end{array}$	$\begin{array}{lll} \frac{12}{5} & \frac{5}{7} & \frac{5}{12} \end{array}$

Name: \qquad BCCS-B

Week 29 Day 3 Date: \qquad Harvard Yale

Princeton

Color the shapes according to the fractions below each shape.

$\frac{1}{4}$	$\frac{3}{4}$	$\frac{1}{2}$
$\frac{5}{12}$	$\frac{7}{12}$	$\frac{5}{6}$

Name: \qquad BCCS-B

Week 29 Day 4 Date: \qquad
Harvard

Yale
Princeton

Write in the numerators and denominators of the equivalent fractions shown.
1)

$\frac{1}{4}=\frac{2}{8}$
2)

4)

6)

8)

Name:
BCCS-B

Week 29 Day 5 Date:
Harvard

Compare the fractions with the help of the pictures shown on the left.
Circle the GREATER fraction.

