Name
Brighter Choice Charter School for Boys
\qquad

$4^{\text {th }}$ Grade Math Remote Learning Packet

Week 27

Name: \qquad
BCCS-B
LEQ: How do I subtract fractions from whole numbers and fractions with the same denominator?

Objective: I can subtract a fraction from a whole number by converting back to a fraction and then subtracting.

Do Now
Keisha ran $5 / 6$ mile in the morning and $2 / 3$ mile in the afternoon. Did Keisha run farther in the morning or in the afternoon? Solve independently. Explain how you solved this problem on the lines.

Input
What is a mixed number? A mixed number is \qquad

Problem 1: using a number line to subtract fractions of the same unit. (5/6-4/6)

Name: \qquad
BCCS-B
Your turn

Step 1: draw a number line to show 8ths.
Step 2: plot 7/8 on the number line
Step 3: count backwards 3/8 on the number line, where are you?
7/8-3/8= \qquad

We can also solve problems like this with fractions that are \qquad than one.

7/6-2/ 6= \qquad

Name:
BCCS-B

Your turn
Step 1: Draw a number line from 0-2 and label fourths.
\qquad

Plot 7/4 and count back 5/4

7/4-5/4=
Problem 2: Decompose to record a difference greater than 1 as a mixed number.

Solve in unit form: 10 sixths -2 sixths = \qquad
Rewrite and solve in standard form: \qquad
Decompose the answer into a whole and a part using a number bond.

We can say that $8 / 6$ (8 sixths) $=$ \qquad

Name:
BCCS-B

Your turn
Step 1: solve 9 fifths - 3 fifths in unit form and number form.
9 fifths -3 fifths= \qquad

Standard form: \qquad
Step 2: draw a number bond to decompose $6 / 5$ as a whole and a part.

Step 3: rename 6/5 as a mixed number.
6/5= \qquad

Problem 3: Solve for the sum using unit language and a number line.

We can solve \qquad problems also by counting up on a number line instead of backwards.
\qquad

On this number line, let's label sixths.
Plot $1 / 6$ and count up $4 / 6$. Where do we end up? \qquad

Name: \qquad
BCCS-B
Your turn
Draw a number line from 0 to 1 and label all the 8ths.
Plot $2 / 8$ and count up $3 / 8$, where do we end up? \qquad
So, we can say: $2 / 8+3 / 8=$ \qquad
Week 27 Day 1 Date: \qquad
Howard Morehouse Hampton

Problem 4: Decompose to record a sum greater than 1 as a mixed number.
Solve in unit form: 5 fourths +2 fourths= \qquad
Rewrite and solve in standard form: \qquad
Draw a number bond to decompose the answer into a whole and a part:

Rename \qquad as \qquad

Your Turn
Step 1: solve 6 sixths +4 sixths= \qquad
Rewrite and solve in standard form: \qquad
Lap 2: decompose $10 / 4$ using a number bond to show the whole and part.

Name:
BCCS-B

Week 27 Day 1 Date: \qquad
Howard Morehouse Hampton

Lap 3: rename $10 / 4$ as a mixed number.
$10 / 4=$ \qquad

CFU:
Solve. Use a number bond to decompose the sum. Record your final answer as a mixed number.
$\frac{12}{6}-\frac{5}{6}$
$\frac{7}{10}+\frac{6}{10}$

Application Problem:

Solve. Use a number bond to decompose the sum. Record your final answer as a mixed number.

$$
\frac{5}{12}+\frac{10}{12}
$$

Name: \qquad
BCCS-B
Exit Ticket

Solve. Use a number bond to decompose the difference. Record your final answer as a mixed number.

$$
\frac{16}{9}-\frac{5}{9}
$$

HOMEWORK

Solve. Use a number bond to decompose the difference. Record your final answer as a mixed number.
Problem (a) has been completed for you.
a. $\frac{12}{6}-\frac{3}{6}=\quad \frac{9}{6}=1 \frac{3}{6}$
b. $\frac{17}{8}-\frac{6}{8}$
C. $\frac{9}{5}-\frac{3}{5}$
d. $\frac{11}{4}-\frac{6}{4}$

Name:
BCCS-B

Week 27 Day 2 Date: \qquad
Howard Morehouse Hampton

LEQ: Is the process of subtracting/adding more than 2 fractions different?
Objective: I can add/subtract more than 2 fractions using what I have learned already about adding and subtracting fractions.

Do Now
Use a number bond to show the relationship between $\frac{2}{6}, \frac{3}{6}$, and $\frac{5}{6}$. Then, use the fractions to write two addition and two subtraction sentences.

Addition number sentences: \qquad and \qquad

Subtraction number sentences: \qquad and \qquad
Input
Problem 1: Subtract a fraction from 1
$1-\frac{3}{8}=$ \qquad

Name:
BCCS-B
\qquad

Your turn
$1-\frac{7}{12}=$ \qquad
How many twelfths are in 1 whole? \qquad
Rewrite: \qquad
Answer: \qquad
Problem 2: Subtract a fraction from a number between 1 and 2.
$1 \frac{1}{5}-\frac{2}{5}=$ \qquad
First we have to change this mixed number back into an improper fraction before we can subtract.

Draw a number bond so show the whole and part.

Now, add the pieces together. \qquad $+$ \qquad $=$

Using the improper fraction subtract \qquad - \qquad $=$ \qquad
Your Turn
$1 \frac{1}{4}-\frac{3}{4}=$ \qquad

Name:
BCCS-B

Week 27 Day 2 Date: \qquad
Howard Morehouse Hampton

Problem 3: adding/subtracting more than 2 fractions at a time.
$1-\frac{3}{12}-\frac{5}{12}=$ \qquad
Just like the other problems we have solved today, we have to make sure that all the \qquad that we are subtracting are the \qquad .

1 whole is equal to \qquad .

There are multiple ways that we can subtract these 3 fractions and arrive at the same answer.

Now you try. Solve:

$$
\frac{11}{10}-\frac{4}{10}-\frac{1}{10}
$$

Using 3 different ways like we did in the previous problem.

Name:
BCCS-B
CFU
Directions: Use the following three fractions to write two subtraction and two addition number sentences.
$\frac{8}{5}, \frac{2}{5}, \frac{10}{5}$
Addition sentences: \qquad and \qquad

Subtraction sentences: \qquad and \qquad

Directions: Solve 3 different ways:
$\frac{5}{8}+\frac{4}{8}+\frac{1}{8}$
\square

Name: \qquad
BCCS-B

Application Problem

Bonnie used two different strategies to solve $\frac{5}{10}+\frac{4}{10}+\frac{3}{10}$.

$$
\begin{gathered}
\text { Bonnie's First Strategy } \\
\frac{5}{10}+\frac{4}{10}+\frac{3}{10}=\frac{9}{10}+\frac{3}{10}=\frac{10}{10}+\frac{2}{10}=1 \frac{2}{10} \\
\frac{1}{10} \frac{2}{10}
\end{gathered}
$$

Bonnie's Second Strategy

Week 27 Day 2 Date: \qquad
Howard Morehouse Hampton

$$
\frac{5}{10}+\frac{4}{10}+\frac{3}{10}=\frac{12}{10}=1+\frac{2}{10}=1 \frac{2}{10}
$$

$$
\begin{gathered}
\text { / } \\
\frac{10}{10} \quad \frac{2}{10}
\end{gathered}
$$

Which strategy do you like best? Why?

Name:
BCCS-B

Week 27 Day 2 Date: \qquad
Howard Morehouse Hampton

Exit Ticket

1. Solve. Model the problem with a number line, and solve by both counting up and subtracting.
$1-\frac{2}{5}=$ \qquad

2. Find the difference in two ways. Use a number bond to show the decomposition. $1 \frac{2}{7}-\frac{5}{7}$

Number Bond	Strategy 1	Strategy 2

Name:
BCCS-B

HOMEWORK

1. Find the difference in two ways. Use number bonds to decompose the total. Part (a) has been completed for you.
a. $\quad 1 \frac{2}{5}-\frac{4}{5}$

$$
\begin{aligned}
& \frac{5}{5}+\frac{2}{5}=\frac{7}{5} \\
& \frac{7}{5}-\frac{4}{5}=\frac{3}{5}
\end{aligned}
$$

$$
\frac{5}{5}-\frac{4}{5}=\frac{1}{5}
$$

$$
\frac{1}{5}+\frac{2}{5}=\left(\frac{3}{5}\right)
$$

b. $1 \frac{3}{8}-\frac{7}{8}$
c. $1 \frac{1}{4}-\frac{3}{4}$
d. $1 \frac{2}{7}-\frac{5}{7}$

Name: \qquad
BCCS-B
LEQ: How can I apply the CUBES strategy to solving word problems that include fractions?

Objective: I can use CUBES to help me be successful in solving any word problem that involves fractions.

Do Now
Add the following 3 different ways:
$3 / 4+2 / 4+1 / 4=$
\square

Rename as a mixed number: \qquad
Input

0

E

Name:
BCCS-B
Input

Problem 1:

Sue $\operatorname{ran} \frac{9}{10}$ mile on Monday and $\frac{7}{10}$ mile on Tuesday. How many miles did Sue run in the 2 days?
\square

Your Turn:
Sam read 3/12 of his book on Monday, 3/12 on Tuesday and 5/12 on Wednesday. How much of his book did he read? Use CUBES to solve.
\square

Name:
BCCS-B

Input

Problem 2:

Mr. Salazar cut his son's birthday cake into 8 equal pieces. Mr. Salazar, Mrs. Salazar, and the birthday boy each ate 1 piece of cake. What fraction of the cake was left?

Your Turn

Ms. Lewis cut a pizza into 12 equal pieces. She ate 1, her two daughters each had 1 and her son had 2. How much of the pizza is left? Use CUBES to solve.
\square

Name:
BCCS-B
CFU
Hudson picked $1 \frac{1}{4}$ baskets of apples. Suzy picked 2 baskets of apples. How many more baskets of apples did Suzy pick than Hudson?
\square

Exit Ticket

Mrs. Smith took her bird to the vet. Tweety weighed 1 and $3 / 10$ pounds. The vet said that Tweety weighed $4 / 10$ pound more last year. How much did Tweety weigh last year?

Name:
BCCS-B

Week 27 Day 3 Date: \qquad Howard Morehouse Hampton

HOMEWORK

Directions: Use the CUBES process to solve.

1. Isla walked $\frac{3}{4}$ mile each way to and from school on Wednesday. How many miles did Isla walk that day?
2. Zach spent $\frac{2}{3}$ hour reading on Friday and $1 \frac{1}{3}$ hours reading on Saturday. How much more time did he read on Saturday than on Friday?

Name: \qquad

BCCS-B

Week 27 Day 4 Date: \qquad Howard Morehouse Hampton

Directions: Today You are going to take a quiz on what we have learned this week.
Log into your Math google class room and look for the quiz title Module 5 topic D quiz.

There will NOT be any HOMEWORK tonight and there is NO exit ticket to complete.

Today scholars will be engaging in a math lesson provided by a substitute teacher. There will not be any math homework tonight and there is also no exit ticket for today's lesson. Have a great weekend and I will see you Monday!

Name
Brighter Choice Charter School for Boys
\qquad

$4^{\text {th }}$ Grade Math Remote Learning Packet

Week 28

Dear Educator,
My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.
(Date)
Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packets assignments are mandatory and must be completed by all scholars.

Name: \qquad
BCCS-B
LEQ: How do I add fractions when the denominators are different?
Objective: I can add fractions that have different denominators by making them the same first.

Do Now
Krista drank $\frac{3}{16}$ of the water in her water bottle in the morning, $\frac{5}{16}$ in the afternoon, and $\frac{3}{16}$ in the evening. What fraction of water was left at the end of the day?

Input
Problem 1: Add unit fractions with related denominators using tape diagrams.
$1 / 3+1 / 6=$ \qquad
To solve a problem like the one above we have to make sure our units are the
\qquad . Right now they are not, therefore we need to one.

Which should we change and how?

Name: \qquad
BCCS-B
Input
Let's draw a tape diagram to show how $1 / 3$ can be equal to sixths.
\square

Now we can add \qquad $+1 / 6=$ \qquad
Let's try another one:
$\frac{1}{2}+\frac{1}{8}=$ \qquad
Which fraction should we decompose? (change)
Let's model that in a tape diagram and use multiplication to support it.

Now, we can add \qquad $+1 / 8=$ \qquad
Your Turn
$\frac{2}{3}+\frac{3}{12}=$ \qquad
*Think about what fraction you will change BEFORE you add.
Show your work

Name:
BCCS-B

Week 28 Day 1 Date: \qquad
Howard Morehouse Hampton

Input
Problem 2: Add fractions with related denominators without using a model.
$\frac{2}{5}+\frac{3}{10}=$ \qquad
We can show that fifths can change to tenths using multiplication. What will we multiply 5 by to get to 10 ?

Remember the rule: Whatever do to the \qquad we do to the
\qquad .

Try the next one:
$\frac{3}{12}+\frac{4}{3}=$ \qquad
CFU
Directions: Solve the following by making the denominators the same first.
c. $\frac{2}{6}+\frac{1}{3}$
d. $\frac{1}{2}+\frac{3}{8}$
e. $\frac{3}{10}+\frac{3}{5}$
f. $\frac{2}{3}+\frac{2}{9}$

Name:
BCCS-B

Week 28 Day 1 Date: \qquad
Howard Morehouse Hampton

Application Problem

Sam and sister were in charge of mowing the lawn. Sam mowed 3/12 of the lawn and his sister mowed $1 / 3$ of the lawn. How much of the lawn did they mow so far?
\square

Exit Ticket

Solve each of the following with or without a model.
$\frac{5}{8}+\frac{2}{4}=$

$$
\frac{3}{4}+\frac{1}{2}=
$$

Name:
BCCS-B
HOMEWORK

Week 28 Day 1 Date:
Howard Morehouse Hampton

Solve the following using any strategy you have learned.
a. $\frac{1}{3}+\frac{1}{6}$
b. $\frac{1}{2}+\frac{1}{4}$
c. $\frac{3}{4}+\frac{1}{8}$
d. $\frac{1}{4}+\frac{5}{12}$

Name: \qquad
BCCS-B
LEQ: How do I add fractions when the denominators are different?
Objective: I can add fractions that have different denominators by making them the same first.

Do Now
Two-fifths liter of chemical A was added to $\frac{7}{10}$ liter of chemical B to make chemical
C. How many liters of chemical C are there?

Input
Problem 1: Add two fractions with related units modeled with a tape diagram.
Use a number bond to rename the sum as a mixed number
$\frac{3}{8}+\frac{3}{4}=$ \qquad
Draw a tape diagram to show $3 / 4$ and then decompose the fourths to eighths.

Add.

Name:
BCCS-B

Week 28 Day 2 Date: \qquad
Howard Morehouse Hampton

Input
Problem 2: Add two fractions with related units modeled with a tape diagram. Use a number bond to rename the sum as a mixed number.
$\frac{1}{2}+\frac{7}{8}$

Your Turn
$\frac{5}{6}+\frac{2}{3}$ \square

Problem 3: Add two fractions with related units without using a model. Express the answer as a mixed number.
$\frac{3}{4}+\frac{6}{8}$

Name:
BCCS-B
CFU

Week 28 Day 2 Date: \qquad
Howard Morehouse Hampton

Solve. Write the sum as a mixed number. Draw a model if needed.
a. $\frac{3}{4}+\frac{2}{8}$
b. $\frac{4}{6}+\frac{1}{2}$
C. $\frac{4}{6}+\frac{2}{3}$
d. $\frac{8}{10}+\frac{3}{5}$

Application Problem

Henry and his family were going on vacation. On the first day they drove $2 / 8$ of the trip and on the next day they drove $1 / 4$ of the trip. How much of the trip have they driven in all so far?

Name:
BCCS-B

Week 28 Day 2 Date:
Howard Morehouse Hampton

Exit Ticket

Solve. Write a complete number sentence. Use a number bond to write each sum as a mixed number.

Use a model if needed.

1. $\frac{1}{4}+\frac{7}{8}$
2. $\frac{2}{3}+\frac{7}{12}$

Name:
BCCS-B
HOMEWORK

Week 28 Day 2 Date: \qquad Howard Morehouse Hampton

Solve. Write the sum as a mixed number. Draw a model if needed.
a. $\frac{1}{2}+\frac{6}{8}$
b. $\frac{7}{8}+\frac{3}{4}$
c. $\frac{5}{6}+\frac{1}{3}$
d. $\frac{9}{10}+\frac{2}{5}$
e. $\frac{4}{12}+\frac{3}{4}$
f. $\frac{1}{2}+\frac{5}{6}$
g. $\frac{3}{12}+\frac{5}{6}$
h. $\frac{7}{10}+\frac{4}{5}$

Name: \qquad
BCCS-B

Week 28 Day 3 Date: \qquad
Howard Morehouse Hampton

LEQ: How do I add/subtracts to a whole number greater than 1 ?
Objective: I can add/subtract a fraction to a whole number greater than 1 by changing that number to a fraction.

Do Now
Winnie went shopping and spent $\frac{2}{5}$ of the money that was on a gift card. What fraction of the money was left on the card? Draw a number line and a number bond to help show your thinking.

Input
Problem 1: Add a fraction less than 1 to a whole number using a tape diagram.
Think about the following:
2 meters +5 centimeters is 2 meters 5 centimeters $(2 \mathrm{~m} 5 \mathrm{~cm})$
2 hours + 5 minutes is \qquad
2 ones +5 eighths is \qquad
$2+\frac{1}{2}$
Draw a tape diagram to model.

Name: \qquad
BCCS-B
Your Turn
Draw a tape diagram to model and solve.
$3+\frac{2}{3}=$ \qquad

Problem 2: Subtract a fraction less than 1 from a whole number using a tape diagram.
3- $\frac{1}{4}$
To solve this we are going to use a tape diagram model to help us. Watch as a draw a partition a tape diagram to solve.

Your Turn
$3-\frac{2}{3}$ \square

Problem 2: Subtract a fraction less than 1 from a whole number using decomposition.
$5-\frac{1}{4}=$ \qquad
Let's use a number bond to decompose 5 wholes into fourths.

Now, subtract.

Name:
BCCS-B
$7-\frac{3}{5}=$
Number Bond:
\qquad

Week 28 Day 3 Date:
Howard Morehouse Hampton

Subtract:

Your Turn
$9-\frac{5}{12}=$

CFU
Complete the subtraction sentences using number bonds.
a. $3-\frac{1}{10}=$ \qquad b. $5-\frac{3}{4}=$

Name:

BCCS-B

Week 28 Day 3 Date: \qquad
Howard Morehouse Hampton

Application Problem

Sam bought 3 gallons of juice and drank $1 / 5$ of it. How much juice does he have left?
\square

Exit Ticket
Complete the subtraction sentences using number bonds. Draw a model if needed.

$$
\text { 1. } 6-\frac{1}{5}=
$$

2. $3-\frac{5}{6}=$ \qquad

Name:
BCCS-B
HOMEWORK

Week 28 Day 3 Date: \qquad
Howard Morehouse Hampton

Draw a tape diagram to match each number sentence. Then, complete the number sentence.
a. $2+\frac{1}{4}=$
b. $3+\frac{2}{3}=$
C. $2-\frac{1}{5}=$
d. $3-\frac{3}{4}=$

Complete the subtraction sentences using number bonds.
a. $\quad 6-\frac{1}{4}=$
b. $7-\frac{2}{10}=$ \qquad

Name: \qquad
BCCS-B

Week 28 Day 4 Date: \qquad
Howard Morehouse Hampton

Directions: Today we are taking our Mid-Mod Assessment. You will use this page and the following pages to solve the Open Response questions. After you have solved the open response questions, you will edlight your answers.

Question \qquad
Using the fractional units shown, identify the fraction of the rectangle that is shaded. Continue this pattern by drawing the next area model in the sequence and identifying the fraction shaded.

Area models	How much of the fraction is shaded?	

Name:

BCCS-B

Week 28 Day 4 Date: \qquad
Howard Morehouse Hampton

Question: \qquad
Ray, Robin, and Freddy went fishing.
They spent $\frac{1}{6}$ of their money on water, $\frac{4}{6}$ of their money on lunch, and the rest on worms. What fraction of their money was spent on worms? Draw a model, and write an equation to solve.

Name:
BCCS-B

Week 28 Day 4 Date: \qquad
Howard Morehouse Hampton

Question: \qquad
Ray, Robin, and Freddy each had identical containers of worms. Ray used $\frac{3}{8}$ container. Robin used $\frac{6}{8}$ container, and Freddy used $\frac{7}{8}$ container. How many total containers of worms did they use?
\square

Name
Brighter Choice
\qquad

$4^{\text {th }}$ Grade Math Remote Learning Packet

Week 29

Dear Educator,
My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.
(Parent Signature)
(Date)
Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packets assignments are mandatory and must be completed by all scholars.

LEQ: How can I use what I have learnded to solve division questions that involve zeros?

Objective: I can use the steps of long division to solve questions that include zeros.

Directions: Rewrite each problem to use the long division method and then solve.

Sam had132 trading cards to put in an album. He was able to place 4 cards on each page. How many pages will he need to put all cards in the album? Use CUBES to solve.

LEQ: How can I use CUBES to show all my work when solving word problems?
Objective: I can solve multiplication word problems using CUBES to show all my work.

Directions: Use CUBES to solve the following problems. Make sure to show all your work.

1. Mrs. Moore took her 4 th grade class of 25 students to the aquarium. Admission for each student was $\$ 12$. What was the total amount of money needed for the field trip?
\square
2. Eighty-seven students were passing around a petition to stop the historical building from being demolished. Each student collected 92 signatures. What was the total number of signatures the students collected?

LEQ: How can I solve 2 digit by 2 digit multiplcation?
Objective: I can use a standard algorithm to solve 2 digit by 2 digit multiplication.
Directions: Use what you have leared to solve these 2 digit by 2 digit multiplication problems.

$\begin{array}{r} 59 \\ \times \quad 21 \\ \hline \end{array}$	$\begin{array}{r} 96 \\ \times \quad 37 \\ \hline \end{array}$	$\begin{array}{r} 32 \\ \times \quad 94 \\ \hline \end{array}$	$\begin{array}{r} 18 \\ \times \quad 65 \\ \hline \end{array}$
$\begin{array}{r} 80 \\ \times \quad 43 \\ \hline \end{array}$	$\begin{array}{r} 26 \\ \times \quad 58 \\ \hline \end{array}$	$\begin{array}{r} 45 \\ \times \quad 74 \\ \hline \end{array}$	$\begin{array}{r} 63 \\ \times \quad 12 \\ \hline \end{array}$

Karen read her chapter book for 15 days in a row. Each day she read a total of 34 minutes. How many total minutes did she read in 15 days? Use CUBES to solve.

LEQ: How can I use the GCF to reduce fractions?
Objective: I can use GCF to reduce each of these fractions to lowest terms.
Directions: Find the GCF of the numerator and denominator and then divide by the GCF to reduce each fraction to lowest terms.

GCF= The Greatest Common Factor

a. $\frac{2}{8}=$
b. $\frac{4}{10}=$
c. $\frac{3}{6}=$
d. $\frac{4}{12}=$
e. $\frac{7}{14}=$
f. $\frac{2}{20}=$
g. $\frac{3}{9}=$
h. $\frac{6}{9}=$
i. $\frac{8}{10}=$
j. $\frac{5}{15}=$
k. $\frac{8}{72}=$
I. $\frac{5}{20}=$
m. $\frac{4}{6}=$
n. $\frac{21}{28}=$
o. $\frac{4}{18}=$
p. $\frac{33}{55}=$

Identify each type of triangle as acute, right or obtuse.
a.

b.

d.

e.

c.

f.

