Name
Brighter Choice Charter School for Boys

$4^{\text {th }}$ Grade Modified Math Remote Learning Packet

 Week 25

Dear Educator,
My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packets assignments are mandatory and must be completed by all scholars.

Name: \qquad
BCCS-B
LEQ: How can I relate area models to multiplication to show equivalent fractions?
Objective I can Use the area model and multiplication to show the equivalence of

two fractions.
Do Now

Week 25 Day 1 Date: \qquad
Howard Morehouse Hampton

HINT:

\# shaded boxes on top
\# total boxes on bottom
What fraction of the whole is shaded? \qquad
Write 3 fifths as a repeated addition sentence of unit fractions;

Complete the number sentence: \qquad x $1 / 5$

Input

Hint: Use your chart to look up "fifths"

Problem 1: Determine that multiplying the numerator and denominator by the same number results in an equivalent fraction.

Show 1 third
Draw 1 horizontal line through the middle.
What fraction is being shown now? \qquad
What happened to the size of the units? \qquad
What happened to the number of units? \qquad
We can say that \qquad $=$ \qquad
Record this as multiplication: \qquad

Name: \qquad

BCCS-B
Input
Your Turn:
Show $1 / 2$ in the area model.
Draw 3 horizontal lines across the area model.

What fraction is being shown now? \qquad
So we can say that \qquad $=$ \qquad
Record this as multiplication: \qquad
Problem 2: Given an area model, determine an equivalent fraction for the area selected.

Draw an area model to show 1 fourth.

Hint: Use your chart to look up "fourth"

I can make an equivalent fraction by drawing one horizontal line through the middle. What fraction did we make? \qquad
This isn't the only equivalent fraction we can make. Using the $2^{\text {nd }}$ area model show $1 / 4$ again and make a new, different equivalent fraction.

What fraction did you make? \qquad

Name:
BCCS-B

Input
Your turn

Using the 2 area models below, make 2 different equivalent fractions of 1 fifth.

What are the 2 equivalent fractions your made? \qquad CFU

Decompose the area models to make an equivalent fraction. Write each as a multiplication equation.

\qquad $=$ \qquad
Write as a multiplication:
\qquad

Write as multiplication:

Name: \qquad
BCCS-B

Application Problem

Model an equivalent fraction for $\frac{4}{7}$ using an area model.

Exit Ticket

Draw two different area models to represent 1 fourth by shading.
A.

B.

Decompose the shaded fraction into (a) eighths and (b) twelfths.
Use multiplication to show how each fraction is equivalent to 1 fourth.
a. $1 / 4 \mathrm{x}$ \qquad $=$ \qquad b. $1 / 4 \mathrm{x}$ \qquad $=$ \qquad

Name: \qquad

BCCS-B

Week 25 Day 1 Date: \qquad
Howard Morehouse Hampton

Homework

The shaded unit fractions have been decomposed into smaller units. Express the equivalent fractions in a number sentence using multiplication. The first one has been done for you
a.

$$
\frac{1}{2}=\frac{1 \times 2}{2 \times 2}=\frac{2}{4}
$$

c.

b.

d.

2. Decompose the shaded fractions into smaller units using the area models. Express the equivalent fractions in a number sentence using multiplication
a.

b.

Name: \qquad
BCCS-B

Week 25 Day 2 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I use division to show equivalent fractions?
Objective I can use division to show that fractions are equivalent

Do Now

What fraction is being modeled in the area model before the horizontal line was drawn? \qquad
What is being model after? \qquad
Write this as multiplication. \qquad

Input

What is GCF? \qquad
What does it mean to simplify/reduce? \qquad

Name:
BCCS-B
Input
Problem 1: simplify 6/12 by finding the GCF and using division. Model the result with an area model.

What are factors of 6 ? \qquad
What are the factors of 12 ? \qquad
What factors do they have in common? \qquad
What is the GCF? \qquad

Your Turn
What are the factors of 4 and 8 ?

4: \qquad
What factors do they have in common? \qquad
What is the GCF? \qquad
Simplify 4/8: \qquad

Name: \qquad
BCCS-B
Input
Problem 2: simplify $2 / 8$ and $3 / 12$ using the GCF

Shade 2/8

Factors of 2: \qquad
Factors of 8: \qquad
GCF: \qquad

Shade 3/12

Factors of 3: \qquad
Factors of 12 : \qquad
GCF: \qquad

What do you notice about $2 / 8$ and $3 / 12$? \qquad
Compose the larger fraction. What is the larger fraction? \qquad
Your Turn
Simplify $2 / 6$ and $4 / 14$ using the GCF.

What do you notice? \qquad
Using 2 different area models, compose the larger fraction.

Name: \qquad
BCCS-B

CFU
Find the GCF of the fraction in the area model below, simplify using the GCF.
Write a corresponding division sentence.

What fraction is being modeled?
\qquad
What is the GCF? \qquad
Simplify using the division and the GCF.
\qquad

What fraction is being modeled?

Application Problem

In the first area model, show 2 sixths. In the second area model, show 3 ninths.

Name:
BCCS-B

Week 25 Day 2 Date: \qquad
Howard Morehouse Hampton

Application Problem cont.

Show how both fractions can be renamed as the same unit fraction.
2/6= \qquad $3 / 9=$ \qquad
Write the corresponding division sentences.

Exit Ticket

In the first area model, show 2 sixths. In the second area model, show 4 twelfths. Show how both fractions can be composed, or renamed, as the same unit fraction.

Express the equivalent fractions in a number sentence using division.

Name:
BCCS-B

Week 25 Day 2 Date: \qquad
Howard Morehouse Hampton

Homework

Compose the shaded fractions into larger fractional units. Express the equivalent fractions in a number sentence using division. The first one has been done for you.
a.

b

$$
\frac{2}{4}=\frac{2 \div 2}{4 \div 2}=\frac{1}{2}
$$

c.

d.

HINT: Remember to use your charts and to look back in your notes.

Name: \qquad
BCCS-B

Week 25 Day 3 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I show equivalent fractions on a number line by using a tape diagram?

Objective I can Explain fraction equivalence using a tape diagram and the number line, and relate that to the use of multiplication and division.

Do Now

What fraction of a foot is 1 inch? What fraction of a foot is 3 inches?
Answer: \qquad Answer: \qquad
(Hint: 12 inches = 1 foot.) Draw a tape diagram to model your work.
Input

What are some similarities between these 2 images?

Name: \qquad

BCCS-B

Input
Problem 1: Use a tape diagram and number line to find equivalent fractions for halves, fourths, and eighths.

Draw a tape diagram to show 1 whole and split into 2 parts, shade 1 of those parts.

Draw a number line that is the same length as the tape diagram that we drew.

Label $0,1 / 2,1$ on the number line
Now, decompose the halves into fourths.
What is a pair of equivalent fractions on the number line? \qquad
Now, decompose the same number line into eighths.
Circle the equivalent fractions you see now.
Problem 2: Use a number line, multiplication, and division to decompose and compose fractions

Draw a number line, label 0 and 1 on the ends and break it into 3 parts. Label thirds on the number line.

Decompose each third into 4 more equal parts.
Circle the equivalent fractions you see.

Name: \qquad

BCCS-B
Problem 3: Decompose a non-unit fraction using a number line and division.
On your own, draw a number line and partition it into 5ths.
-place a 0 at the beginning and 1 at the end
-label all 5ths on the number line
-Place a point on $2 / 5$

Now, partition 2 fifths into 6 equal parts. How many parts will there be inbetween each part? \qquad
If we did this on the entire number line, how many equal parts would there be?
$2 / 5=$ \qquad Write a multiplication sentence: \qquad

CFU

Label each number line with the fractions shown on the tape diagram. Circle the fraction that labels the point on the number line that also names the shaded part of the tape diagram.

Name:
BCCS-B

Application Problem

Kelly was baking bread but could only find her $\frac{1}{8}$-cup measuring cup. She needs $\frac{1}{4}$ cup sugar, $\frac{3}{4}$ cup whole wheat flour, and $\frac{1}{2}$ cup all-purpose flour. How many $\frac{1}{8}$ cups will she need for each ingredient?
\square

Exit Ticket

Partition a number line from 0 to 1 into sixths. Decompose $\frac{2}{6}$ into 4 equal lengths.

Circle the equivalent fractions
Write a corresponding multiplication sentence:

Name:
BCCS-B

Week 25 Day 3 Date: \qquad
Howard Morehouse Hampton

Homework

Label each number line with the fractions shown on the tape diagram. Circle the fraction that labels the point on the number line that also names the shaded part of the tape diagram
a.

b.

c.

Name: \qquad
BCCS-B
LEQ: How can I show my understanding of equivalent fractions?
Objective I can show my understanding of equivalent fractions by actively engaging in review successfully

Do Now

Draw a tape diagram and partition it into fourths.
Shade 1/4

Draw a number line of the same length and partition it into 4ths as well, label all the fourths between 0 and 1.

Decompose the tape diagram above into twelfths.
Do the same on the number line, circle all the equivalent fractions.

Input/CFU

Directions: For today's lesson, you are going to need to use the 3 strips of paper that were included with your lesson.

Step 1: partition one of the strips of paper into thirds, shade $1 / 3$.
Step 2: partition a $2^{\text {nd }}$ piece of paper into a fraction that is equivalent to $1 / 3$. Use multiplication to help you determine an equivalent fraction. Shade the fraction that is equivalent to $1 / 3$.

Step3: Draw a number line on the $3^{\text {rd }}$ strip of paper that shows thirds and the equivalent fraction you made with the $2^{\text {nd }}$ strip of paper.

Name: \qquad
BCCS-B

Week 25 Day 4 Date: \qquad
Howard Morehouse Hampton

Homework

Part 1: Shade the models to find equivalent fractions.

$\frac{2}{3}$

$$
=\overline{6}
$$

$\frac{1}{2}=\overline{4}=\overline{8}$

Part 2: Write the fraction that names the shaded part of each circle.

Which two fractions above are equivalent? \qquad and \qquad
Part 3: Draw a line to divide the 1 st square into 2 equal parts. Shade $\frac{1}{2}$ of the square. Then draw lines to divide the 2 nd square into 4 equal parts. Shade $\frac{1}{2}$ of the square.

Write an equivalent fraction statement shown by the squares above. \qquad

Name:
BCCS-B

Week 25 Day 5 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I prove my understanding of Topic A and B ?
Objective; I can prove my understanding of topic A and B by scoring an 80% or better on my quiz.

Today your will be taking a quiz on what we have learned in fractions so. Log into your google classroom and find the assessment called:

Module 5 Topic A/B quiz.

You will have the entire class period to complete your work and submit your google form.

Good luck! :
There is NO HOMEWORK tonight and NO EXIT TICKET TODAY.

Name
Brighter Choice Charter School for Boys

$4^{\text {th }}$ Grade Modified Math Remote Learning Packet

 Week 26

Dear Educator,
My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packets assignments are mandatory and must be completed by all scholars.

Name:
BCCS-B

Week 26 Day 1 Date: \qquad Howard Morehouse Hampton

LEQ: How can I use benchmark fractions to help compare fractions on a number line?

Objective: I can use knowledge of benchmark fractions to help compare 2 fractions.

Do Now

Draw a tape diagram to show 2/3. Below the tape diagram draw a number line, partition it into 3rds and label all the fractions between 0 and 1.

Input
(video)
Compare 5/6 and 2/3
\qquad

Write 2 comparison statements:
and

Name:
BCCS-B
Input
Problem 1: reason about the size of a fraction as compared to $1 / 2$.
Draw a number line and partition it into sixths. Label all the sixths between 0 and 1.

How many sixths are in a whole? \qquad
How many sixths are in a one half? \qquad
Plot $1 / 2$ on the number line.
Plot 2/6 on the number line.
Is $2 / 6$ greater than or less than $1 / 2$? \qquad
Let's write 2 comparison statements using the greater than and less than symbol.
Remember:
<LESS THAN >GREATER THAN = EQUALTO

Write 2 comparison statements:
and

Name: \qquad
BCCS-B
Your Turn
Partition a number line into eighths, labeling all the 8 ths between 0 and 1.

How many 8 ths are in $1 / 2$? \qquad
Label it on the number line.
Plot 5/8
Is $5 / 8$ greater than or less than $1 / 2$? \qquad
Right 2 number sentences that prove that. \qquad and \qquad

What if we wanted to compare $2 / 3$ to $1 / 2$? Are there any amount of halves that are equal to thirds?

Draw a number line to show all the thirds between 0 and 1.

Based on what we know about the size of fractional pieces, do we think that $1 / 2$ will come before or after $2 / 3$? Plot it.

Write 2 comparison sentences
\qquad and \qquad

Name: \qquad
BCCS-B

Input

Problem 2: Plot points on a number line by thinking about fractions in relation to 0 , $\frac{1}{2}$, or 1 .

Let's begin by drawing a number line that shows $0,1 / 2$ and 1 .

Without plotting all the 12ths between 0 and 1 where do we think $5 / 12$ will be.
Now, lets reason about where we think $7 / 8$ would go on the same number line.
One comparison I could write is $5 / 12<7 / 8$. What is another comparison we could write?

CFU

Using a number line compare $5 / 8$ and $4 / 5$ based on what we know about $0,1 / 2$ and 1.
\qquad

Application problem

Plot $\frac{1}{4}, \frac{4}{5}$, and $\frac{5}{8}$ on a number line, and compare the three points.

$1 / 4 \ldots 5 / 8 \quad 4 / 5 \quad 5 / 8 \quad 1 / 4 \ldots 4 / 5$

Name:
BCCS-B

Week 26 Day 1 Date:
Howard Morehouse Hampton

Exit ticket

On a number line plot $8 / 10,3 / 5$ and $1 / 4$ without measuring.

Now compare:
$1 / 4 \ldots \underbrace{1 / 2}$
$8 / 10 \ldots 3 / 5$
$1 / 2 \ldots$

Name: \qquad
BCCS-B

Week 26 Day 1 Date: \qquad
Howard Morehouse Hampton

Homework

1. a. Plot the following points on the number line without measuring.

b. Use the number line in Part (a) to compare the fractions by writing $>,<$, or $=$ on the lines.
i. $\frac{2}{3}-\frac{1}{2}$
ii. $\frac{4}{10}-\frac{1}{6}$
2. Compare the fractions given below by writing >or < on the lines.

Give a brief explanation for each answer referring to the benchmark of $0, \frac{1}{2}$, and 1 .
a. $\frac{1}{2}-\frac{1}{4}$

Name: \qquad
BCCS-B

Week 26 Day 2 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I use benchmark fractions greater than 1 to compare 2 fractions?
Objective: I can use benchmark fractions greater than 1 to compare 2 fractions on a number line.

Do Now

Mr. and Mrs. Reynolds went for a run. Mr. Reynolds ran for $\frac{6}{10}$ mile. Mrs. Reynolds ran for $\frac{2}{5}$ mile. Who ran farther? Explain how you know. Use the benchmarks $0, \frac{1}{2}$, and 1 to explain your answer.
\square

Input
What appears to be wrong with the following fraction 6/4 6 fourths?
\qquad
\qquad

An improper fraction is \qquad

Name: \qquad
BCCS-B

Input
Problem 1: Reason to compare fractions between 1 and 2.
Compare $7 / 8$ and 6/4.
What do we know about 7/8? \qquad

What do we know about 6/4? \qquad

Based on what we already know about these 2 fractions we can compare them. Write 2 comparison statements.
\qquad and \qquad

Compare 5/3 and 9/5
These 2 fractions are improper. So this time let's use number bonds to help us.
We are going to draw 2 number bonds, both showing how much of each unit is in a whole and how much is left. For example:

Now, draw a number bond similar to this one for $9 / 5$.
Now we can just compare the fractions that we have left, $2 / 3$ and $4 / 5$. This comparison is still a bit challenging so we need to think of the size of the pieces.

Let's compare these 2 fractions by using the 2 tape diagrams given.

Name:
BCCS-B
Input

Your Turn

Compare the 2 fractions below by drawing the number bonds to compare.
$\frac{7}{4}$ and $\frac{9}{5}$.

Problem 2: Reason about the size of fractions as compared to $1 \frac{1}{2}$. Model $11 / 8$ as a number bond.

Now compare the amount of 8ths left over after the whole. 3/8 \qquad $1 / 2$

So, 11/8 \qquad $1 \frac{1}{2}$.

Name:
BCCS-B
CFU

Place the following fractions on the given number line and then complete the comparisons

4/3, 11/6,17/12
\qquad
a. $1 \frac{5}{6}$ \qquad $1 \frac{5}{12}$
b. $1 \frac{1}{3}$ \qquad $1 \frac{5}{12}$

Application Problem

Compare the fractions given below by writing > or < on the lines. Give a brief explanation referring to benchmarks
$\frac{14}{12}-\frac{11}{6} \quad$ Explain.

Name:
BCCS-B

Exit Ticket

Place the following fractions on the number line given.
a. $\frac{5}{4}$
b. $\frac{10}{7}$
c. $\frac{16}{9}$

Compare the fractions using $>,<$, or $=$.
a. $\frac{5}{4}-\frac{10}{7}$
b. $\frac{5}{4}-\frac{16}{9}$

Week 26 Day 2 Date:
Howard Morehouse Hampton

Name: \qquad BCCS-B

Week 26 Day 2 Date: \qquad Howard Morehouse Hampton

Homework

1. Place the following fractions on the number line given.
a. $\frac{3}{2}$
b. $\frac{9}{5}$
C. $\frac{14}{10}$

2. Use the number line in Problem1 to compare the fractions by writing $>,<$, or $=$ on the lines.
a. $1 \frac{1}{6} \longrightarrow 1 \frac{4}{12}$
b. $1 \frac{1}{2} \longrightarrow 1 \frac{4}{5}$
3. Place the following fractions on the number line given.
a. $\frac{12}{9}$
b. $\frac{6}{5}$
C. $\frac{18}{15}$

Name:
BCCS-B

Week 26 Day 3 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I use common denominators or common numerators to compare fractions?

Objective: I can make common denominators to compare fractions.
Do now
Compare $\frac{4}{5}, \frac{3}{4}$, and $\frac{9}{10}$ using $<,>$, or $=$. Put them in order from smallest to biggest. Explain your reasoning using a benchmark.

If needed, draw a number line to assist.

Input

Think about the following statement:
Which is greater 1 apple or 3 apples?
Write your thoughts

Share.

Name:
BCCS-B
Input
Problem 1: Reason about fraction size using unit language.
Which is larger and how do you know, $1 / 4$ or $1 / 5$?
We know that when a \qquad is cut into \qquad pieces, the pieces continue to get \qquad . This proves that \qquad is
\qquad than \qquad .

Model it

Write 2 comparison statements:
\qquad and \qquad
We can use the same thinking when the numerator is NOT one.
For example:
2/4 and 2/6
When the \qquad are the same, we have to compare the
\qquad of the pieces.

Model it
\square

Write 2 statements: \qquad

Name: \qquad
BCCS-B

Input
Your Turn
Compare: 5/7 and 5/12
Model it
\square

Write 2 statements: \qquad
Problem 2: Compare fractions with related numerators.
Compare 2/8 and 4/10.
These 2 fractions have \qquad numerators, meaning that we can go from one to the other.

How can we go from 2 to 4? \qquad
Remember the rule: Whatever you do to the \qquad you MUST to do the
\qquad -.

After we multiply $2 / 8$ by 2 , what are we comparing now?
\qquad and \qquad
Now, the numerators are the SAME, we can again compare just the size of the pieces.

Write 2 comparison statements: \qquad

Name: \qquad
BCCS-B

Your turn

Compare 9/10 and $3 / 4$
What fraction are you going to change? \qquad
How are you going to change it? \qquad
Compare \qquad and \qquad
Write 2 statements: \qquad
Problem 3: Compare fractions having related denominators where one denominator is a factor of the other.

Sometimes the \qquad are related and we can use the same process by making common denominators.

For example: 7/10 and 3/5
I can change 5 to 10 by multiplying by 2 . Now we can compare:
\qquad and \qquad
When the denominators are the \qquad that means the size of the pieces are the \qquad so, we are now comparing the \qquad of pieces we have.

Write 2 statements: \qquad
Model it

\square

Name:
BCCS-B

Week 26 Day 3 Date: \qquad
Howard Morehouse Hampton

Your turn:
2/3 and 4/6
Which fraction are you going to change?
How are you going to change it? \qquad
Model it

Write 2 comparison statements: \qquad
CFU
a. $\frac{3}{5}-\frac{3}{4}$
a. $\frac{2}{3}-\frac{5}{6}$
b. $\frac{3}{4}-\frac{7}{8}$
c. $\frac{7}{11}-\frac{7}{13}$

Name:
BCCS-B

Week 26 Day 3 Date: \qquad
Howard Morehouse Hampton

Application Problem

Timmy drew the picture to the beloq and claimed that $\frac{2}{3}$ is less than $\frac{7}{12}$. Evan says he thinks $\frac{2}{3}$ is greater than $\frac{7}{12}$. Who is correct? Support your answer with a picture.

Exit Ticket

Draw tape diagrams to compare the following fractions:
2/5 and 3/10

Name: \qquad
BCCS-B

Week 26 Day 3 Date:
Howard Morehouse Hampton

Homework

1. Compare the pairs of fractions by reasoning about the size of the units. Use $>,<$, or $=$.
a. 1 third \qquad 1 sixth
b. 2 halves \qquad 2 thirds
c. 2 fourths \qquad 2 sixths
d. 5 eighths \qquad 5 tenths
2. Draw two tape diagrams to model each pair of the following fractions with related denominators.

Use >, <, or = to compare.
a. $\frac{3}{4}-\frac{7}{12}$

Name: \qquad
BCCS-B

Week 26 Day 4 Date: \qquad
Howard Morehouse Hampton

LEQ: How can cross-multiplication help me compare fractions?
Objective: I can use the butterfly method to compare fractions.
Do Now
Jamal ran $\frac{2}{3}$ mile. Ming ran $\frac{2}{4}$ mile. Laina ran $\frac{7}{12}$ mile. Who ran the farthest? What do you think is the easiest way to determine the answer to this question?

Input
How do we use the butterfly method? \qquad

Problem 1 Compare $3 / 4$ and 4/5 using the butterfly method.

Write 2 comparison statements: \qquad
You try: compare 2/3 and 3/5 using the butterfly method

Name:
BCCS-B
Input
Problem 2: we can use this same method when our fractions are improper
Compare 5/3 and 7/4

Write 2 comparison statements: \qquad
Your turn
Compare 6/4 and 7/5

Write 2 comparison statements: CFU

Using the butterfly method complete the following:

Week 26 Day 4 Date:
Howard Morehouse Hampton

$$
\begin{aligned}
& \frac{3}{5}-\frac{4}{7} \\
& \frac{3}{7}-\frac{2}{6} \\
& \frac{5}{8}-\frac{6}{9}
\end{aligned}
$$

Name:
BCCS-B

Week 26 Day 4 Date: \qquad
Howard Morehouse Hampton

Application Problem

Explain two ways you have learned to compare fractions. Provide evidence using words, pictures, or numbers.

Compare 2/3 and 4/6 using two different methods

Exit Ticket

Solve using the butterfly method and then draw an area model for each pair of fractions, and use it to compare the two fractions by writing $>,<$, or $=$ on the line.

Name:
BCCS-B
\qquad

Homework

Use any method to compare the fractions. Record your answer using $>,<$, or $=$
a. $\frac{8}{9}-\frac{2}{3}$
b. $\frac{4}{7}=-\frac{4}{5}$
C. $\frac{3}{2}-\frac{9}{6}$
d. $\frac{11}{7}=\frac{5}{3}$

Name: \qquad
BCCS-B

Week 26 Day 5 Date: \qquad
Howard Morehouse Hampton

LEQ: How can I prove my understanding of Topic C?
Objective; I can prove my understanding of topic C by scoring an 80% or better on my quiz.

Do Now
Compare the following fractions using any method you have learned 2/6 an 3/7

7/4 and 8/3

Today you are going to be taking a quiz on comparing fractions. Tonight, there is NO HOMEWORK and NO EXIT TICKET -:

Log into your google classroom and find the quiz called Module 5 Topic C quiz.

Make sure to submit your google form when you are done! GOOD LUCK!

