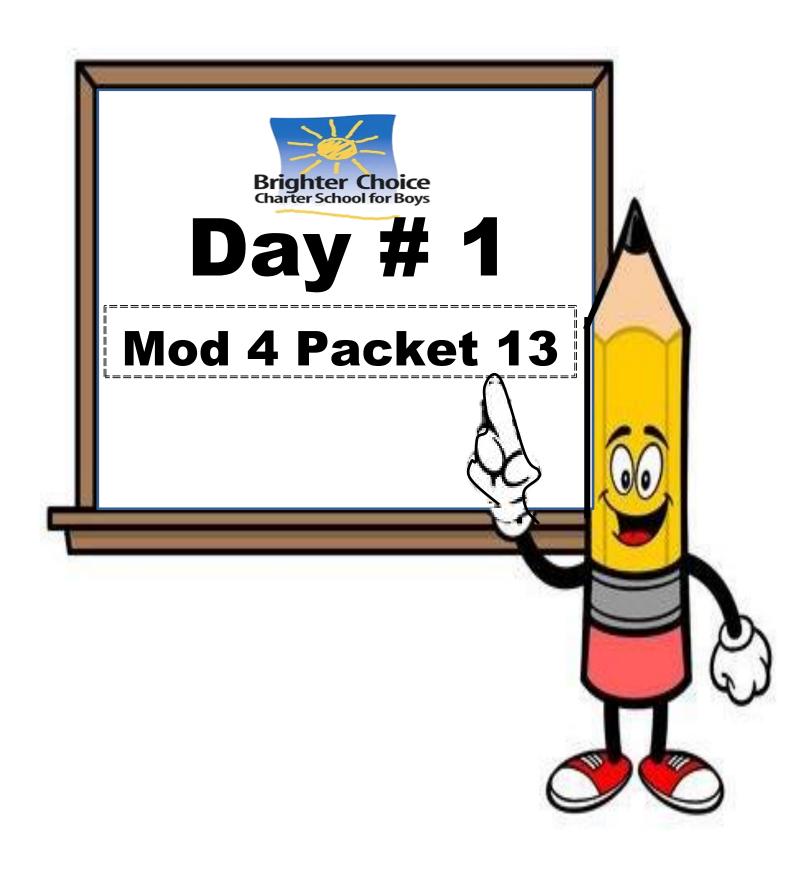


Name	

5th Grade Modified Math Remote Learning Packet Week 25



Dear Educator,

My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

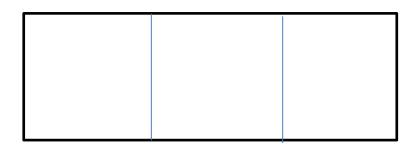
(Parent Signature)	(Date)

Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

Name:	Week 25 Day 1 Date:
BCCS-Boys	Stanford MIT

Do Now

$\frac{1}{4}x(3+5)$	15 times as much as 1 fifth of 12

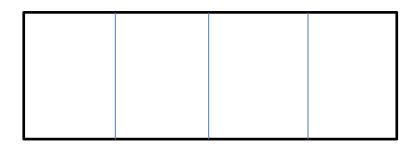

Input Activity:

Jan has 4	oans of crispy rice tre	eats. She sends $\frac{1}{2}$	of the pans to
	h her children. <u>How</u>		
does Jan se	end to school?		
Expression	1:		
Solve:			
\ \ / + :f -			
wnat it si	he had pans of c	rispy rice treats	and sent - or
the pans	to school. <u>How m</u>	any pans of trea	ats did Jan
send?			
Expressio	n:		_
Solve:			

What if she had 1 pan of crispy rice treats and sent $(\frac{1}{2})$
the pan to school. How many pans of treats did Jan
send?
Expression:
Solve:
What if she had $(\frac{1}{2})$ pan of crispy rice treats and sent $(\frac{1}{2})$
the pan to school. How many pans of treats did Jan
send?
Expression:
Solve:

$$\frac{1}{3}$$
 of $\frac{1}{2}$

Check by multiplying:



Answer:

- 1. Let's cut the box into thirds to represent $\frac{1}{3}$ vertically, up and down. Label it $\frac{1}{3}$.
- 2. Let's cut the box into halves to represent $\frac{1}{2}$ horizontally, going side to side. Label it $\frac{1}{2}$.
- 3. One box created will be your answer to $\frac{1}{3}x\frac{1}{2}$
- 4. Check your work by multiplying numerators and multiplying denominators.

$$\frac{1}{3}$$
 of $\frac{1}{4}$

Check by multiplying:

Answer:

- 5. Let's cut the box into fourths to represent $\frac{1}{4}$ vertically, up and down. Label it $\frac{1}{4}$.
- 6. Let's cut the box into thirds to represent $\frac{1}{3}$ horizontally, going side to side. Label it $\frac{1}{3}$.
- 7. One box created will be your answer to $\frac{1}{3}x\frac{1}{4}$
- 8. Check your work by multiplying numerators and multiplying denominators.

A sales lot is filled with vehicles for sale $(\frac{1}{3})$ of the vehicles are pickup trucks $(\frac{1}{3})$ of the trucks are white. What fraction of all the vehicles are white pickup trucks?

$$\frac{1}{3}$$
 of $\frac{1}{3}$

Check by multiplying: Answer:

Problem 5

$$\frac{1}{2}$$
 of $\frac{1}{4}$

Check by multiplying: Answer:

$$\frac{1}{2}$$
 of $\frac{1}{6}$

Check by multiplying:

Problem 7

$$\frac{1}{5}$$
 of $\frac{1}{2}$

Check by multiplying:

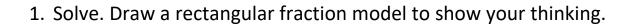
Answer:

Answer:

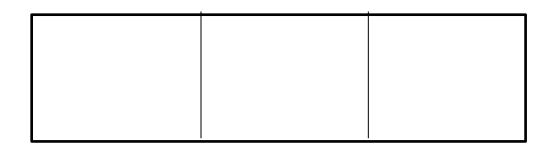
Problem Set

1	1	$f^{\frac{1}{2}}$	
Τ.	$\frac{-}{4}0$	J	

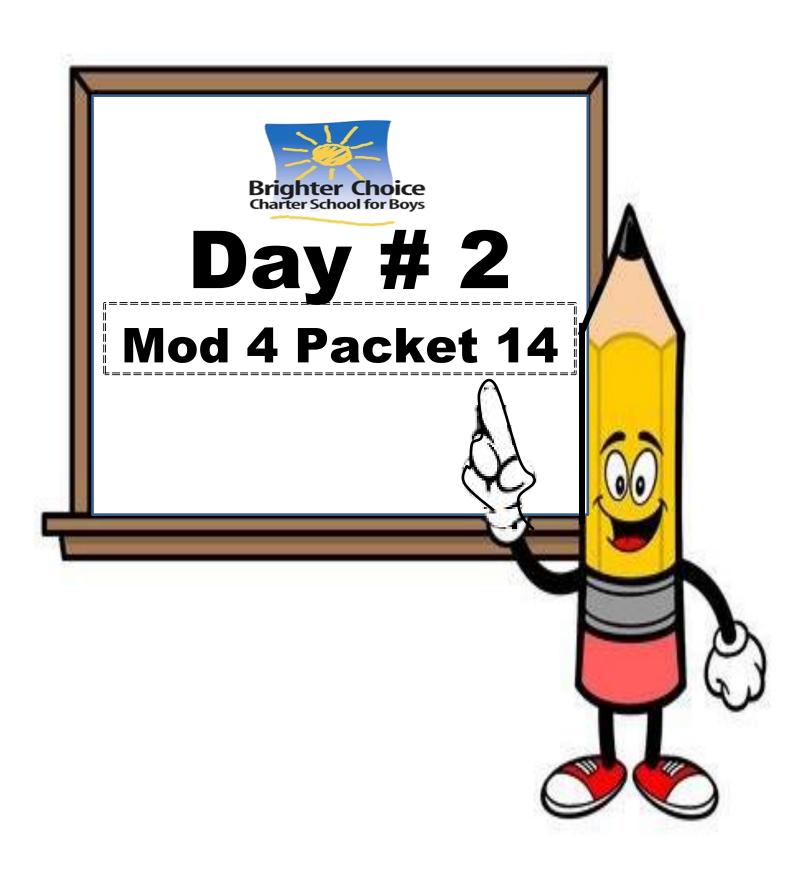
2.
$$\frac{1}{2}$$
 of $\frac{1}{6}$


i		
Ì		
Ì		
Ì		
Ì		
Ì		
Ì		

Application Problem


Marie is designing a bedspread for her grandson's new bedroom $\frac{1}{3}$ of the bedspread is covered in race cars, and the rest is striped $\frac{2}{3}$ of the stripes are red. What fraction of the bedspread is covered in red stripes?

Exit Ticket

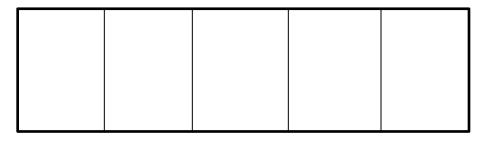


$$\frac{1}{3}$$
 of $\frac{1}{3} =$ ____

2. Solve. Draw a rectangular fraction model to show your thinking.

$$\frac{1}{2}$$
 of $\frac{1}{6} =$ ____

Name:		Week 25 Day 2 Date:				
BCCS-Boys	5		Stanford MIT			
		<u>Do</u>	Now			
		$\frac{1}{4}$	$\frac{1}{2}$			
		$\frac{1}{6}$	$-x\frac{1}{3}$			

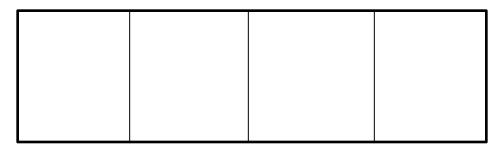

Input Activity:

Problem 1

Sarah had $\frac{3}{5}$ pan of crispy rice treats. She sent $\frac{1}{3}$ of the treats to school. What fraction of the whole pan did she send to school?

$$\frac{3}{5}$$
 of $\frac{1}{3}$

Check by multiplying:


Answer:

- 1. Let's cut the box into fifths. Shade in 3 to represent $\frac{3}{5}$ vertically, up and down.
- 2. Let's cut the box into thirds to represent $\frac{1}{3}$ horizontally, going side to side. Shade one to represent $\frac{1}{3}$.
- 3. The shaded boxes created will be your answer to $\frac{3}{5}x\frac{1}{3}$
- 4. Check your work by multiplying numerators and multiplying denominators.

Sarah had $\frac{2}{3}$ pan of crispy rice treats. She sent $\frac{3}{4}$ of the treats to school. What fraction of the whole pan did she send to school?

$$\frac{2}{3}$$
 of $\frac{3}{4}$

Check by multiplying:

Answer:

- 1. Let's cut the box into fourths and shade in 3 to represent $\frac{3}{4}$ vertically, up and down.
- 2. Let's cut the box into thirds and shade in 2 to represent $\frac{2}{3}$ horizontally, going side to side.
- 3. One box created will be your answer to $\frac{2}{3}x\frac{3}{4}$
- 4. Check your work by multiplying numerators and multiplying denominators.

Reduce First, Then Solving:

Problem 3

$$\frac{7}{9}$$
 of $\frac{3}{7}$

Let's solve this problem a different way since it would be too hard to solve it with a tape diagram.

- Can we reduce somewhere? If so, where? Remember we can only reduce numerators to denominators and not numerators to numerators or denominators to denominators.
- After reducing, now multiply across.

$$\frac{3}{10} \times \frac{5}{9}$$

$$\frac{5}{8} \times \frac{4}{15}$$

$$\frac{1}{2}$$
 of $\frac{2}{5}$

$$\frac{2}{3} \text{ of } \frac{3}{5}$$

$$\frac{3}{4}$$
 of $\frac{4}{5}$

Problem Set

Solve. Reduce each fraction before multiplying.

$$\frac{4}{5}$$
 of $\frac{2}{3}$

$$\frac{3}{4} \times \frac{2}{3}$$

$$\frac{3}{4} \times \frac{5}{6}$$

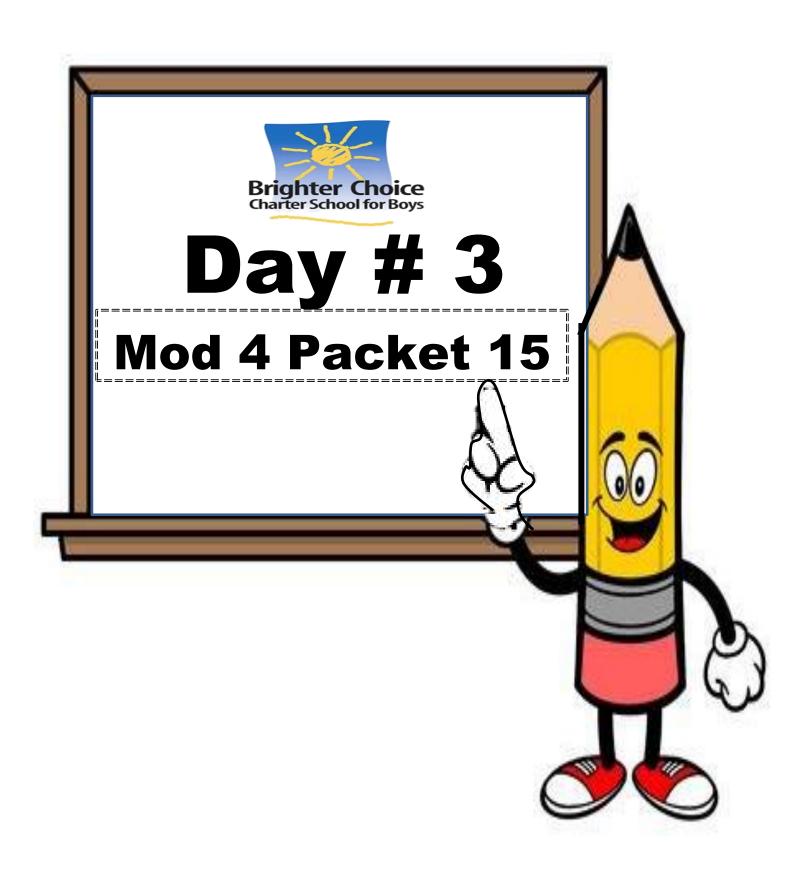
$$\frac{4}{5}$$
 of $\frac{5}{8}$

Application Problem:

	drawing a recta ation sentence	angular fraction	model and wri	ting a
Beth had	$\frac{3}{4}$ box of candy ox does she have	7. She ate $\frac{2}{3}$ of the region of the r	ne candy. <u>What</u>	<u>fraction of the</u>
С				
U				
В				
E				
S				

Answer: _____ of the box

Exit Ticket


Solve.

1.
$$\frac{2}{3}$$
 of $\frac{3}{5}$

$$2.\frac{4}{9} \times \frac{3}{8}$$

3.
$$\frac{3}{4}$$
 $\times \frac{1}{4}$

$$4.\frac{2}{9}$$
 of $\frac{3}{8}$

Name:	Week 25 Day 3 Date:			
,	·			
BCCS-Boys	Stanford MIT			

Do Now

Solve. Draw a rectangular fraction model to show your thinking. Then, write a multiplication sentence.

$$\frac{1}{3}$$
 of $\frac{3}{4}$

$$\frac{3}{4} \times \frac{2}{3}$$

Reduce each fraction before multiplying.

$$\frac{2}{6} \times \frac{3}{8}$$

$$\frac{5}{10}$$
 of $\frac{5}{15}$

Input Activity:

Problem 1

		cookies for a bake sale. She sold $\left(\frac{2}{3}\right)$ of
them and gave $\left(\frac{3}{4}\right)$	f th	ne remaining cookies to the students
working at the sale	٠. <u>۲</u>	low many cookies did she have left?

Answer: _____ cookies

Jakiem is icing 30 cupcakes. He spreads mint icing or $\frac{1}{5}$ of the cupcakes and chocolate on $\frac{1}{2}$ of the remaining cupcakes. The rest will get vanilla icing. How many cupcakes have vanilla icing?

Answer: _____ cupcakes have vanilla icing

The Booster Club sells 240 cheeseburgers $(\frac{1}{4})$ of the cheeseburgers had pickles, $(\frac{1}{2})$ of the remaining burgers had onions, and the rest had tomato. How many cheeseburgers had tomato?

Answer: _____ cheeseburgers had tomato

DeShawn is sorting his rock collection $\frac{2}{3}$ of the rocks are metamorphic, and $\frac{3}{4}$ of the remainder are igneous rocks. If the 3 rocks left over are sedimentary, how many rocks does DeShawn have?

Answer: _____ rocks left

Milan puts $\frac{1}{4}$ of his lawn-mowing money in savings and uses $\frac{1}{2}$ of the remaining money to pay back his sister. If he has \$15 left, how much did he have at first?

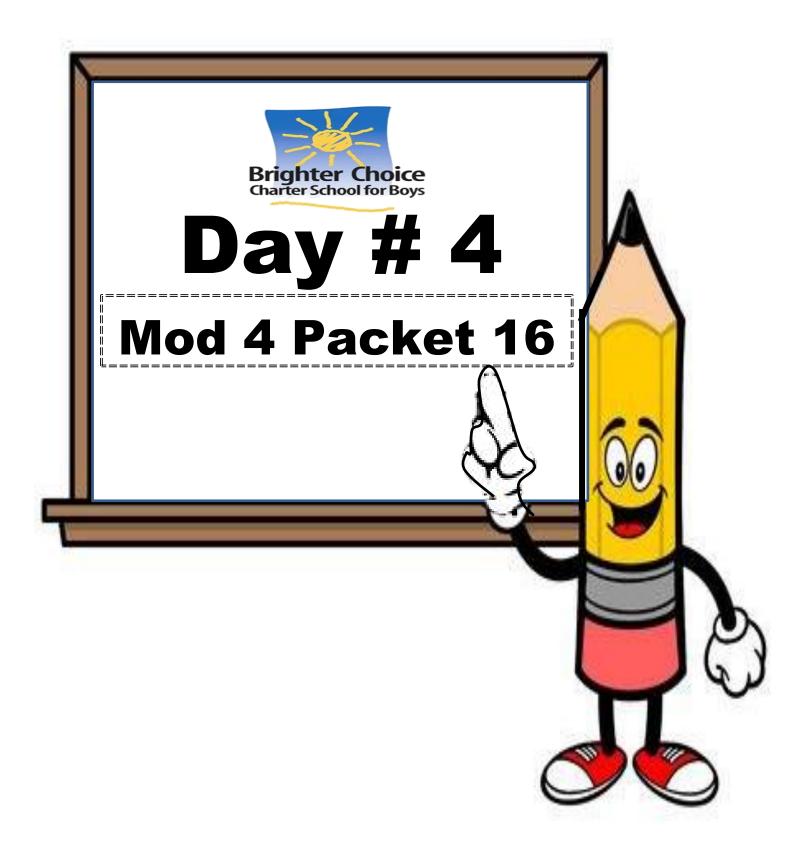
Answer: \$_____ at first

Problem Set

Riverside Elementary School is holding a school-wide election to choose a school color. Five-eighths of the votes were for blue, $\frac{5}{9}$ of the remaining votes were for green, and the remaining 48 votes were for red.

a. <u>How many votes were for blue and how many were</u> for green?

Application Problem:


Kendra spent $\frac{1}{3}$ of her allowance on a book and $\frac{2}{5}$ on a snack. If she had four dollars remaining after purchasing a book and snack, what was the total amount of her allowance?

Answer: \$_____

Exit Ticket

Three-fourths of the boats in the marina are white $\frac{4}{7}$ of the remaining boats are blue, and the rest are red. If there are 9 red boats, how many boats are in the marina?

Answer: _____ boats

Name:	Week 25 Day 4 Date:
BCCS-Boys	Stanford MIT
Do No	<u>ow</u>
Rose bought 40 tomatoes. She make a pizza for a party and $\frac{1}{2}$ for sauce for her family. She u tomatoes to make a salad. Wtomatoes did she use to make	sed the rest of the hat fraction of the
Answer: of the	tomatoes

Input Activity:

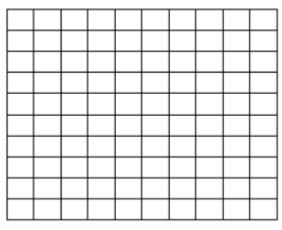
Problem 1

 0.1×4

Read this multiplication expression using unit form and the word of.
Write this expression as a multiplication sentence using a fraction
Solve. Do not simplify your product.
Write this as a decimal

0.1 × 2

Read this multiplication expression using unit form and the word <i>of</i> .
Write this expression as a multiplication sentence using a fraction
Solve. Do not simplify your product.
Write this as a decimal

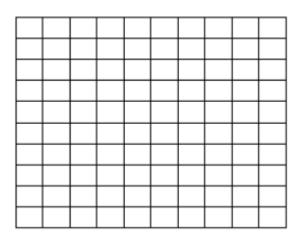

0.01 × 6

Read this multiplication expression using unit form and the word <i>of</i> .
Write this expression as a multiplication sentence using a fraction
Solve. Do not simplify your product.
Write this as a decimal

0.1×0.1

Solve. Do not simplify your product.

Let's draw it as an area model



Write your answer as a decimal _____

$$\frac{2}{10} \times \frac{1}{10}$$

Solve. Do not simplify your product.

Let's draw it as an area model

Write your answer as a decimal _____

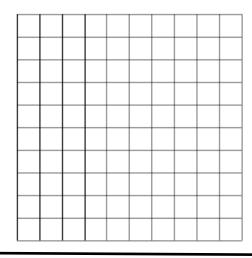
$$\frac{1}{10} \times 1.4$$

Solve. Do not simplify your product.

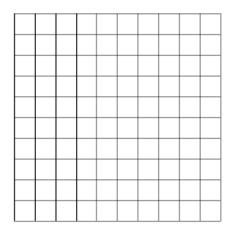
Write your answer as a decimal _____

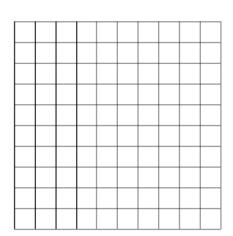
Problem 7

0.1 x 0.01


Solve. Do not simplify your product.

Write your answer as a decimal_____

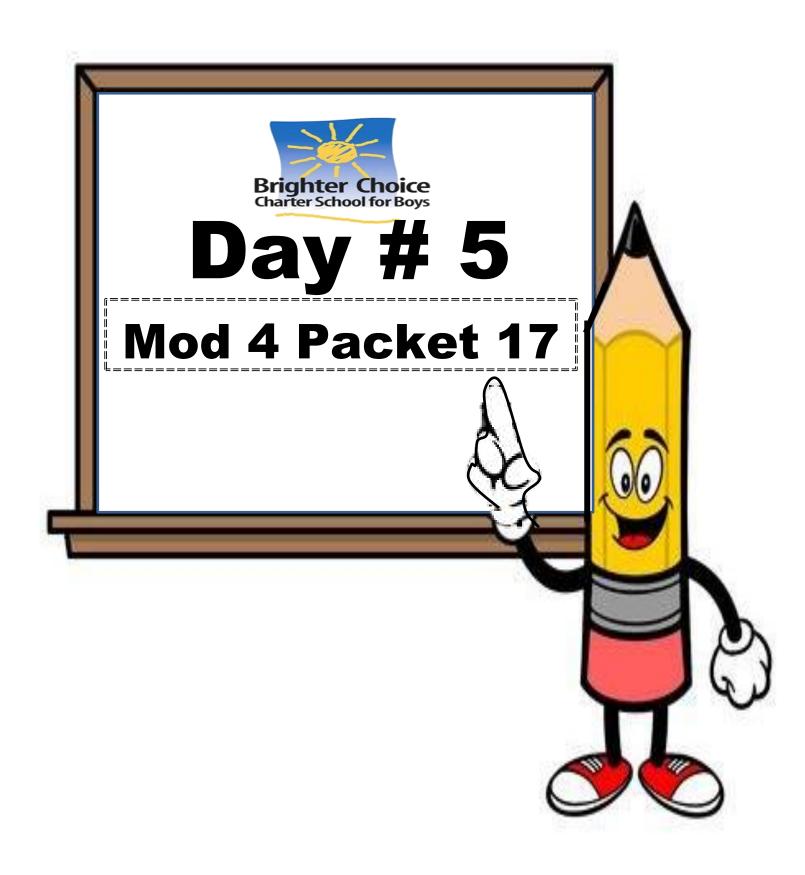

Problem Set


Multiply and model. Rewrite each expression as a multiplication sentence with decimal factors.

$$\frac{4}{10} \times \frac{3}{10}$$

$$\frac{6}{10} \times 1.7$$


Application Problem


A Boy Scout has a length of rope measuring 0.7 meter. He uses 2 tenths of the rope to tie a knot at one end. How many meters of rope are in the knot?

Answer:	meters
	Exit Ticket

Multiply and model. Rewrite the expression as a number sentence with decimal factors.

$$\frac{1}{10} \times 1.2$$

Do Now			
BCCS-Boys	Stanford MIT		
Name:	Week 25 Day 5 Date:	Week 25 Day 5 Date:	

<u>אסאו סע</u>

Multiply.

Input Activity:

Problem 1

 3.2×2.1

Rewrite this problem as a fraction multiplication
expression:
Solve.
Write this as a decimal

3.2×0.44

Rewrite this problem as a fraction multiplication expression:
Solve.
Write this as a decimal

3.2×4.21

Rewrite this problem as a fraction mu	ultiplication
expression:	
Solve.	
Write this as a decimal	

2.6×0.4

Re	ewrite this problem as a fraction multiplication
ex	pression:
So	lve.
Write t	this as a decimal

3.1 x 1.4

Rewrite this problem as a fraction	-
expression:	
Solve.	
Write this as a decimal	

4.2 x 0.12

Rewrite this problem as a fraction multiplication expression:
Solve.
Write this as a decimal

Problem Set

$\overline{}$	\sim		\sim	\sim
,	~	Χ	(1	ч
_		Λ	v.	. ノ

Rewrite this problem as a fraction multiplication expression: Solve.
Write this as a decimal
3.3 x 1.4
Rewrite this problem as a fraction multiplication expression: Solve.
Write this as a decimal

Application Problem:

An adult female gorilla is 1.4 meters tall when standing upright. Her daughter is 3 tenths as tall. How much more will the young female gorilla need to grow before she is as tall as her mother?

Answer:	meters

Exit Ticket

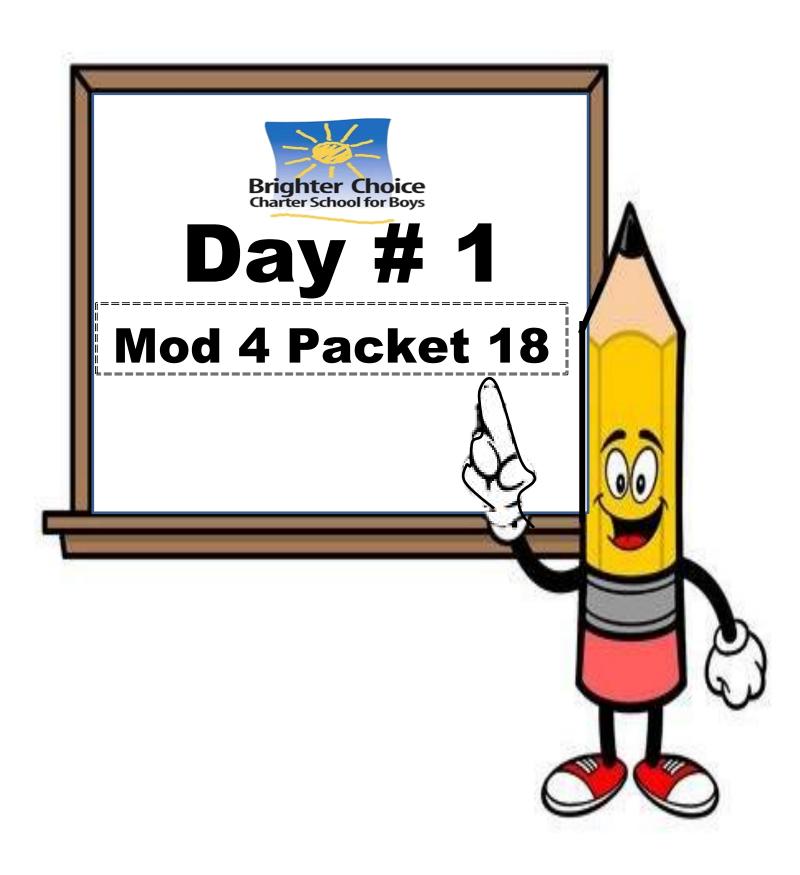
Multiply.

a.
$$3.2 \times 1.4 =$$

b.
$$1.6 \times 0.7 =$$

Name
Name

5th Grade Modified Math Remote Learning Packet Week 26



Dear Educator,

My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

(Parent Signature)	(Date)

Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

Name:	Week 26 Day 1 Date:
BCCS-Boys	Stanford MIT
<u>Do N</u>	<u>ow</u>
Colby puts 1 of his savings of the remaining money to \$15 eft, how much did he	is into the bank and uses $\frac{1}{2}$ to buy some candy. If he has e have at first?
He has at first.	

Creating Equivalent Fractions Review:

To create	fractions, you mu	ust
the	and the	by the
n	umber.	
Creating	Equivalent Fractions to	Decimals:
The three decin	nal places are	_,,
and	·	
To change a fra	ction to a decimal, you r	need to make an
	fraction that has a	of
	, or	
Ex:		
3		
$\frac{3}{5} = \frac{1}{10}$		
Re-write as a de	acimal	
We-write as a de		

Express Fractions as Equivalent Decimals

 $\frac{2}{5}$

Change this to a decimal. Remember, decimals need to either be tenths, hundredths, or thousandths.

Think...

is 10 a multiple of 4? Y / N

is 100 a multiple of 4? Y / N

is 1,000 a multiple of 4? Y / N

Solve.

Remember...

- If the denominator is a multiple of 10, it is a multiple of 100 and 1,000.
- If the denominator is a multiple of 100 it is a multiple if 1,000.

 $\frac{3}{4}$

Change this to a decimal. Remember, decimals need to either be tenths, hundredths, or thousandths.

Think...

is 10 a multiple of 4? Y / N

is 100 a multiple of 4? Y / N

is 1,000 a multiple of 4? Y / N

Solve.

Remember...

- If the denominator is a multiple of 10, it is a multiple of 100 and 1,000.
- If the denominator is a multiple of 100 it is a multiple if 1,000.

 $\frac{5}{2}$

Change this to a decimal. Remember, decimals need to either be tenths, hundredths, or thousandths.

Think...

is 10 a multiple of 8? Y / N

is 100 a multiple of 8? Y / N

is 1,000 a multiple of 8? Y / N

Solve.

Remember...

- If the denominator is a multiple of 10, it is a multiple of 100 and 1,000.
- If the denominator is a multiple of 100 it is a multiple if 1,000.

 $\frac{9}{20}$

Change this to a decimal. Remember, decimals need to either be tenths, hundredths, or thousandths.

Think...

is 10 a multiple of 20? Y / N

is 100 a multiple of 20? Y / N

is 1,000 a multiple of 20? Y / N

Solve.

Remember...

- If the denominator is a multiple of 10, it is a multiple of 100 and 1,000.
- If the denominator is a multiple of 100 it is a multiple if 1,000.

 $\frac{6}{25}$

Change this to a decimal. Remember, decimals need to either be tenths, hundredths, or thousandths.

Think...

is 10 a multiple of 25? Y / N

is 100 a multiple of 25? Y / N

is 1,000 a multiple of 25? Y / N

Solve.

Remember...

- If the denominator is a multiple of 10, it is a multiple of 100 and 1,000.
- If the denominator is a multiple of 100 it is a multiple if 1,000.

Problem Set

Express each fraction as an equivalent decimal.

$$\frac{1}{4} \times \frac{25}{25} = \underline{\hspace{1cm}}$$

$$\frac{3}{4} \times \frac{25}{25} = \underline{\hspace{1cm}}$$

$$\frac{4}{5} =$$

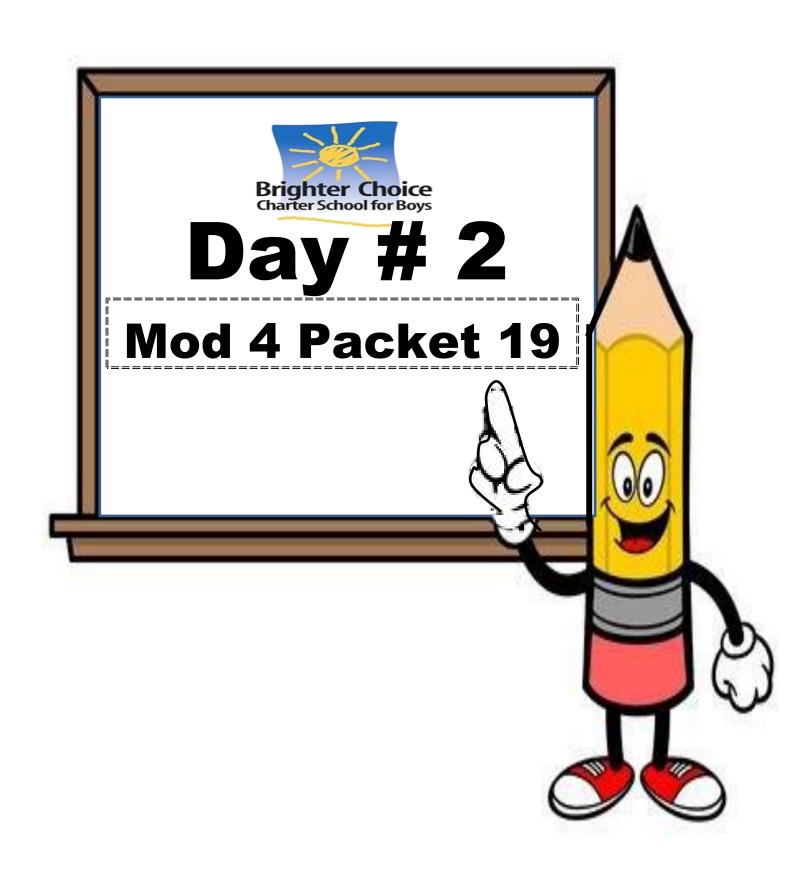
$$\frac{11}{20} =$$

Application Problem:

Hakiem has $\frac{3}{4}$ of a dollar. He buys a stamp that costs 44 cents Change both numbers into decimals, and tell how much money Hakiem has after paying for the stamp.

Answer: \$_____

Exit Ticket


Express the fractions as equivalent decimals.

$$a.\frac{1}{4} =$$

b.
$$\frac{2}{5}$$
 =

$$c.\frac{3}{25} =$$

$$d.\frac{5}{20} =$$

Name:_____ Week 26 Day 2 Date:_____ BCCS-Boys Stanford MIT

Do Now

Express each fraction as an equivalent decimal.

$$a.\frac{2}{5} \times - = \underline{} = \underline{}$$
Fraction Decimal

Input Activity:

Steps to dividing fractions using K-C-F

1.	Put any number over the number
2.	K the first fraction. Leave it
3.	C the symbol to a
	symbol.
4.	F the second fraction (the one you
	want to divide by) upside down. This is called a
5.	·
6.	
7.	whenever

Example:

K C F
$$4 \div \frac{1}{2}$$

Problem 2

K C F

$$8 \div \frac{1}{9}$$

$$\frac{1}{7} \div 7$$

Problem 3

$$\frac{1}{8} \div 6$$

Problem 4

$$2 \div \frac{1}{4}$$

Tien wants to $cu(\frac{1}{4})$ foot lengths from a board that is $\frac{1}{4}$ feet long. How
many boards can he cut?
Division Expression
Solve:
Answer: boards
<u>Problem 6</u>
If Melanie pours $(\frac{1}{2})$ liter of water into 4 bottles, putting an equal
amount in each, how many liters of water will be in each bottle?
Division Expression
Solve.

Answer: _____liters of water

Problem 8

$$8 \div \frac{1}{3}$$

$$\frac{1}{6} \div 3$$

Problem 9

$$\frac{1}{2} \div 3$$

Problem 10

$$4 \div \frac{1}{5}$$

Problem Set

Solve by using KCF (Keep-Change-Flip). Write your quotient in the blank.

a.
$$2 \div \frac{1}{8} =$$

k C F
b.
$$\frac{1}{4} \div 3 = ______$$

K C F

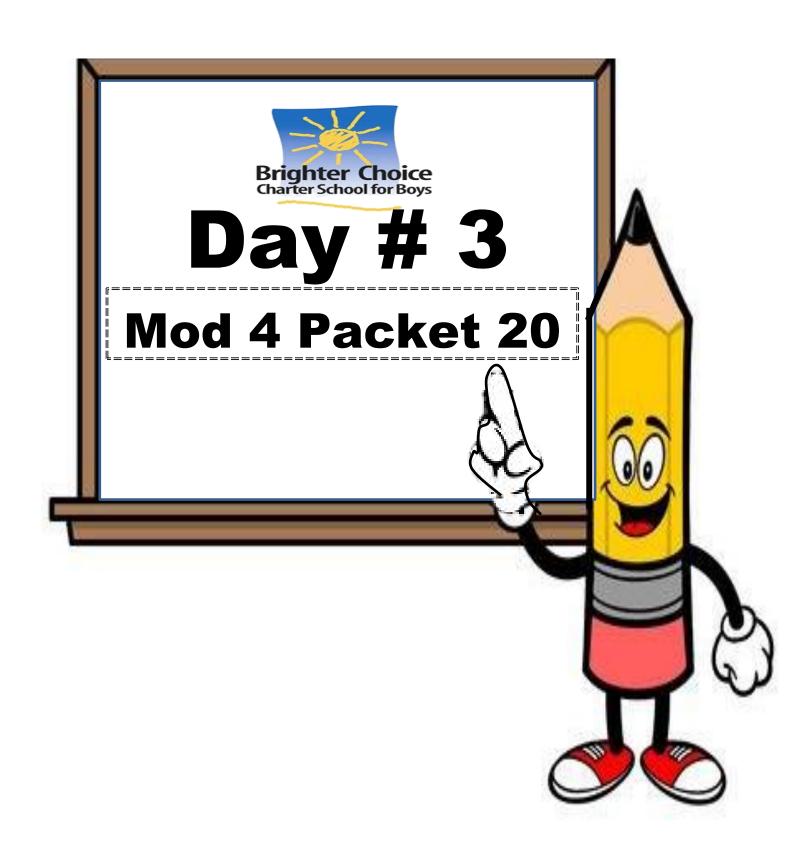
c.
$$\frac{1}{8} \div 4 =$$

K C F
d.
$$\frac{1}{9} \div 9 =$$

Application Problem:

Mrs. Apple used $\frac{1}{2}$ gallon of olive oil to make 8 identical batches of salad dressing. How many gallons of olive oil did she use in each batch of salad dressing?

Answer: _____gallons of olive oil


Exit Ticket

Solve. Use KCF to solve.

a.
$$4 \div \frac{1}{2} =$$

b.
$$\frac{1}{8} \div 5 =$$

c.
$$7 \div \frac{1}{6} =$$

Name:______ Week 26 Day 3 Date:_____

BCCS-Boys

Stanford MIT

Do Now

Divide the fractions by whole numbers using KCF.

a.
$$5 \div \frac{1}{3} =$$

b.
$$\frac{1}{8} \div 7 =$$

c.
$$\frac{1}{4} \div 3 =$$

d.
$$4 \div \frac{1}{9} =$$

Input Activity:

Steps to	<u>Example</u>	
1. Put any	7 ÷ 0.1	
numbe	r	
2	any decimal to a	
3. K	the first fraction. Leave	
it	·	
4. C	the symbol to a	
	symbol.	
5. F	the second fraction to its	
	·	Problem 1
6	across.	7.4 ÷ 0.1
7	whenever	

Problem 3

2 ÷ 0.2

 $9.8 \div 0.1$

Problem 4

Problem 5

12 ÷ 0.1

 $2.4 \div 0.2$

Problem 6

Problem 7

 $7.4 \div 0.01$

 $1.6 \div 0.04$

Problem 9

 $3.5 \div 0.5$

 $0.42 \div 0.07$

Problem Set

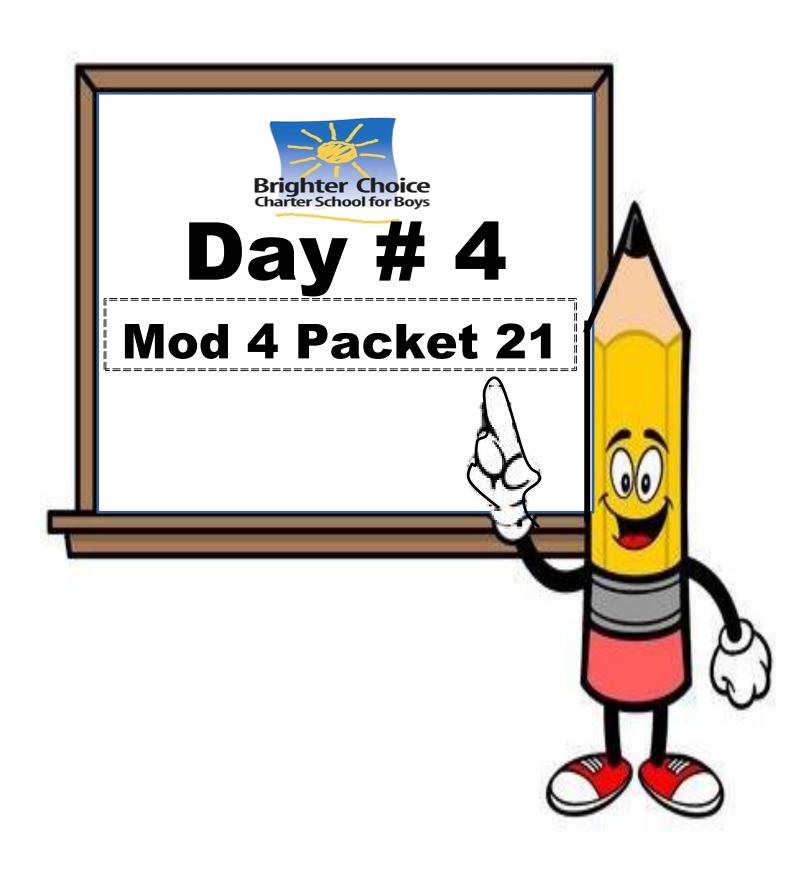
Change the expression to fractions then use KCF.

a. 12.5 ÷ 0.01

b. 31 ÷ 0.1

Application Problem:

Yung bought \$4.60 worth of bubble gum. Each piece of gum cost \$0.10. How many pieces of bubble gum did Yung buy?


Answer: _____ pieces of gum

Exit Ticket

Rewrite the division expression as a fraction and use KCF.

 $3.2 \div 0.8$

 $7.2 \div 0.9$

Name:_____ Week 26 Day 4 Date:_____

BCCS-Boys

Stanford MIT

Do Now

Divide the fractions by whole numbers using KCF.

a.
$$6 \div \frac{1}{10} =$$

b.
$$\frac{1}{3} \div 12 =$$

c.
$$\frac{1}{6} \div 11 =$$

d.
$$10 \div \frac{1}{2} =$$

Input Activity:

Steps to dividing decimals using K-C-F

- 8. Put any <u>whole</u> number over the number <u>one</u>.
- 9. Change any decimal to a fraction.
- 10. **K** <u>KEEP</u> the first fraction. Leave it <u>alone</u>.
- 11. \mathbf{C} CHANGE the \pm symbol to a \times symbol.
- 12. **F** <u>FLIP</u> the second fraction to its <u>reciprocal</u>.
- 13. Multiply across.
- 14. Simplify whenever necessary.

Problem 1

 $8 \div 0.1$

Problem 1

$$\frac{55}{10} \div \frac{1}{10}$$

Problem 3

$$\frac{45}{10} \div \frac{2}{10}$$

Problem 4

$$\frac{35}{100}\div10$$

<u>Problem 7</u>

15 ÷ 0.01

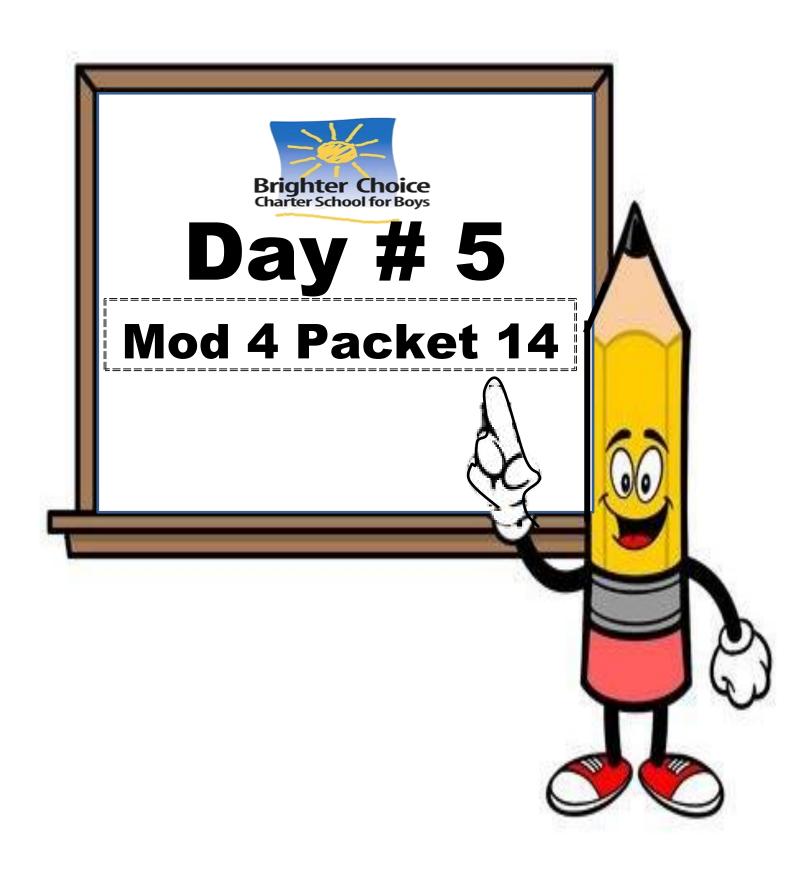
 $12 \div \frac{1}{4}$

Problem Set

Change the expression to fractions then use KCF.

$$\frac{1}{10} \div 30$$

Application Problem:


A vial contains 20 mL of medicine. If each dose is $\frac{1}{8}$ of the vial, how many mL is each dose? Express your answer as a decimal.

Answer: _____ mL

Exit Ticket

Rewrite the division expression as a fraction and use KCF.

$$64 \div \frac{8}{10}$$

Name:	Week 26 Day 5 Date:
BCCS-Boys	Stanford MIT

Do Now

Rewrite the division expression as a fraction and use KFC.

$$\frac{45}{10} \div \frac{15}{10}$$

Input Activity:

Problem 1

 $34.8 \div 0.6$

Problem 2

 $7.36 \div 0.08$

Problem 4

21.56 ÷ 0.98

45.5÷ 0.7

Problem 5

Problem 6

 $4.55 \div 0.7$

78.4 ÷ 0.7

Problem 8

53.2 ÷ 0.4

 $1.52 \div 0.8$

Problem Set

Divide

7.32 ÷ 0.06	9.42 ÷ 0.03	39.36 ÷ 0.96

Application Problem

The total distance of a race is 18.9 km. If volunteers set up a water station every 0.7 km including one at the finish line, how many stations will they have?

Answer:	stations

Exit Ticket

Solve.

a.
$$6.39 \div 0.09$$

b. $82.14 \div 0.6$