

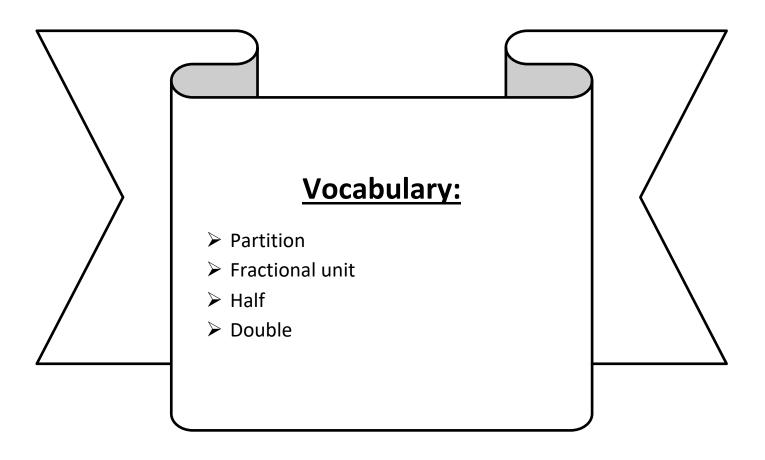
3rd Grade Math Remote Learning Packet

Week 30

Dear Educator,

My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

(Parent Signature)	(Date)


Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

Reteach

LEQ: How can I partition a number line and label fractional units of sixths, eighths, and tenths?

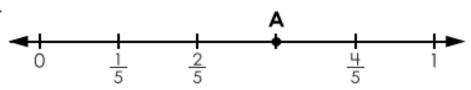
Objective: I can use halves, thirds, fourths, and fifths to partition a number line and label sixths, eights, and tenths.

Name:

Week 30 Day 1 Date: _____

BCCS-B

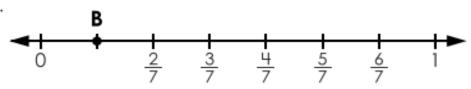
Harvard


Yale

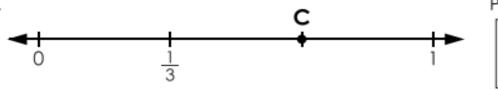
Princeton

Do Now:

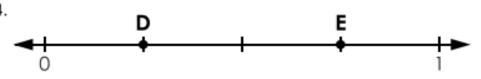
Fractions on Number Lines


1.

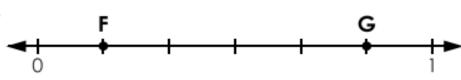
Point A is:


2.

Point B is:


3.

Point C is:


4.

Point D is: Point E is:

5.

Point **F** is: Point G is:

6. Label each fraction on the number line below.

Name:	Week 30 Da	ay 1 Date:	
BCCS-B	Harvard	Yale	Princeton
Input (My Turn):			
Rule: We can use halves to make	fourths and eighths by doubling t	the parts.	
<u>Directions:</u> Partition each number	r line into the given fractional uni	it and label all fraction	s from 0 to 1 whole.
Halves			
_			
	-		
0			1
Farmtha			
Fourths			
4			
<u> </u>			
0			1
Eighths			
Ligituis			
<u> </u>			
, i	-		1
0			1

Name:	Week 30 Day 1 Date:		
BCCS-B	Harvard	Yale	Princeton

Problem Set (Your Turn):

Rule: We can use halves to make fourths and eighths by doubling the parts.

<u>Directions:</u> Partition each number line into the given fractional unit and label all fractions from 0 to 1 whole.


Halves

Fourths

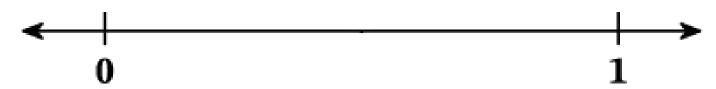
Eighths

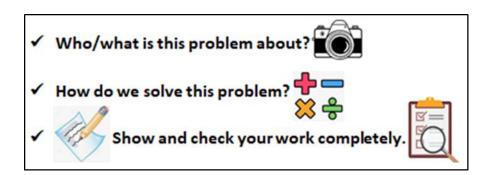
Name:	Week 30 Day 1 Date:		
BCCS-B	Harvard	Harvard Yale	
Input (My Turn):			
Rule: We can use fifths to make	tenths by doubling the parts.		
<u>Directions:</u> Partition each number	er line into the given fractional unit a	and label all fraction	s from 0 to 1 whole.
Eifthe			
Fifths			
- I			1 -
< 	-		-
0			1
·			-
T			
Tenths			
4			
•			! -
Λ			1

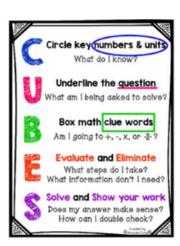
Name:	Week 30 Day 1 Date:			
BCCS-B	Harvard	Yale	Princeton	

Problem Set (Your Turn):

<u>Directions:</u> Partition each number line into the given fractional unit and label all fractions from 0 to 1 whole.


Thirds

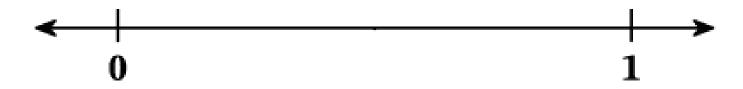

Sixths



Ninths

Name:	Week 30 Day 1 Date:		
BCCS-B	Harvard	Yale	Princeton

Application:

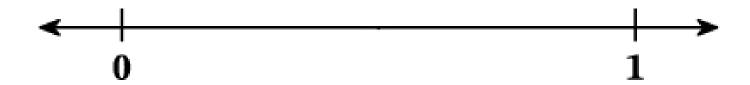

Jeremiah says that 1 eighth is less than 1 fourth. Josiah says that 1 eighth is greater than 1 fourth because 8 is greater than 4. Who is correct? Draw a number line to explain your thinking.

Name:	Week 30 Day 1 Date:		
BCCS-B	Harvard	Yale	Princeton

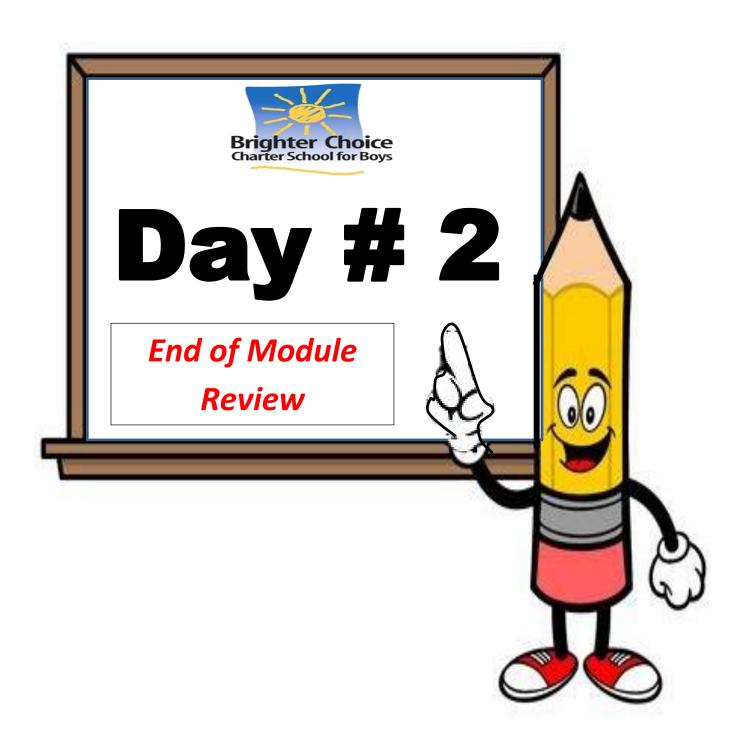

Exit Ticket:

<u>Directions:</u> Partition each number line into the given fractional unit and label all fractions from 0 to 1 whole.

Halves


Eighths

Homework:


Draw a number line to match each fraction strip below. Label all fractions within the whole.

1	1	1
3	3	3

$\frac{1}{6}$ $\frac{1}{6}$	1/6	1 6	<u>1</u>	1/6
-----------------------------	-----	-----	----------	-----

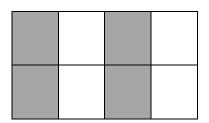
End of Module Assessment 5: Fractions

	D	Λ		П	С
1	K/	4	$C^{\scriptscriptstyle{T}}$	'	C

Name: _____

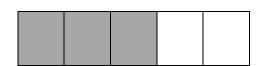
College: _____

1. What fractions of the trees are shaded?


- A. $\frac{5}{6}$
- B. $\frac{4}{6}$
- C. $\frac{1}{6}$
- D. $\frac{6}{4}$

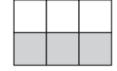
2. Mrs. Page paints $\frac{3}{4}$ of her roof. Which picture could be Mrs. Page's roof?

A.

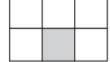

В.

C.

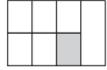
D.

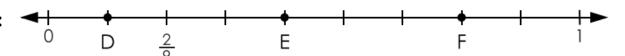


3. Which statement is an example of the fraction $\frac{1}{3}$?

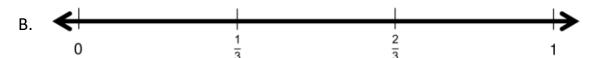

- A. In Josiah's fish tank, 1 of his 3 fish is a goldfish.
- B. In Mason's pencil case, 3 of his 7 pencils are sharpened.
- C. In Prince's backpack, 2 out of 3 books are about math.
- D. Gionni has 1 cat that he feeds 5 times a day.

4. Which figure is $\frac{1}{6}$ shaded?




c

D

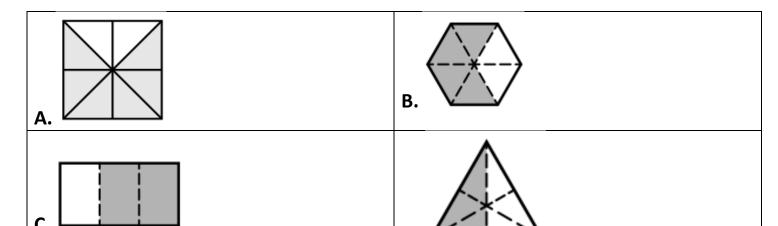

5. Point E is:



- A. $\frac{2}{9}$
- B. $\frac{4}{9}$
- C. $\frac{7}{9}$
- D. 1 whole

6. Which number line is partitioned into fifths?




7. What is the fractional unit for the pizza below?

- A. Fifths
- B. Eighths
- C. Thirds
- D. Sevenths

8. How many fourths are in 1 whole?

- A. 1
- B. 2 ninths
- C. 4
- D. $\frac{2}{4}$
- 9. Which fraction model is equivalent to $\frac{1}{2}$?

- 10. Which fraction is equivalent to 4 wholes?
- A. $\frac{8}{2}$
- B. $\frac{12}{2}$
- $\mathsf{C}.\,\frac{\frac{4}{4}}{}$
- D. $\frac{8}{4}$

11. $\frac{20}{5}$ is equivalent to:

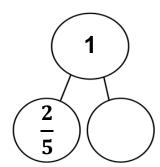
- A. 10 wholes
- B. 4 wholes
- C. 3 wholes
- D. 5 wholes

12. Use the model to fill in the equivalent fraction

$$= \frac{2}{4} = \frac{2}{2}$$

- A. $\frac{2}{2}$
- B. $\frac{4}{2}$
- C. $\frac{1}{1}$
- D. $\frac{1}{2}$

13. Which fraction statement below is true?


A.
$$\frac{1}{3} > \frac{1}{5}$$

A.
$$\frac{1}{2} < \frac{1}{2}$$

A.
$$\frac{1}{6} = \frac{1}{3}$$

A.
$$\frac{1}{8} > \frac{1}{6}$$

14. Which fraction will complete the whole in the number bond below?

- A. $\frac{1}{5}$
- B. $\frac{3}{5}$
- C. 1
- D. $\frac{2}{5}$

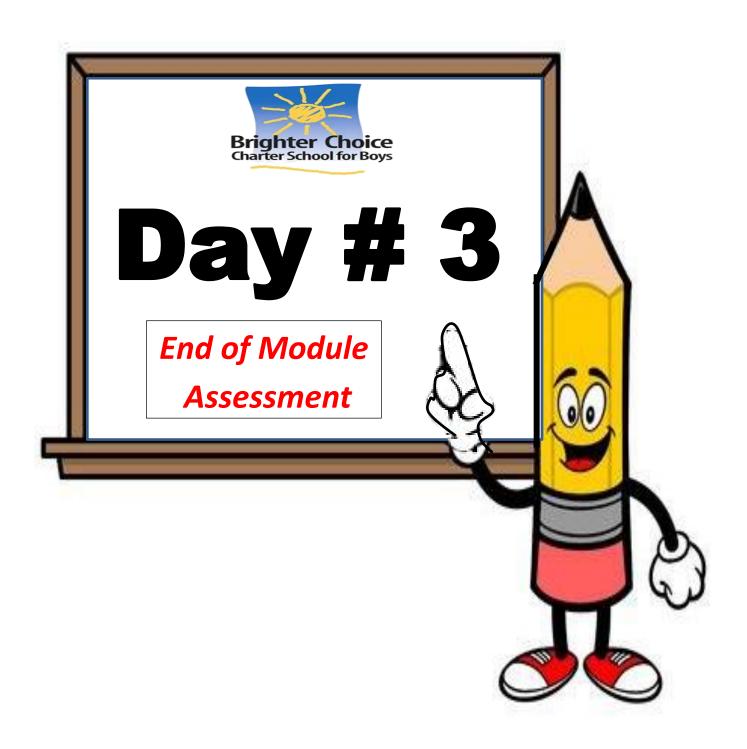
15. Which whole represents 6 thirds?

 $\frac{7}{3}$

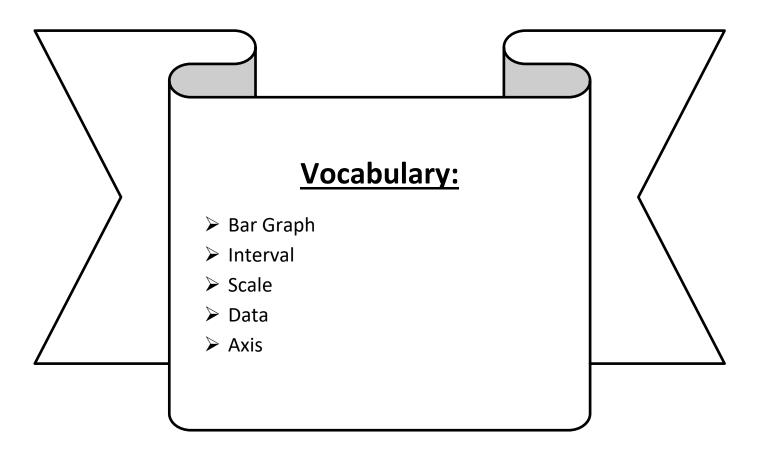
9 3

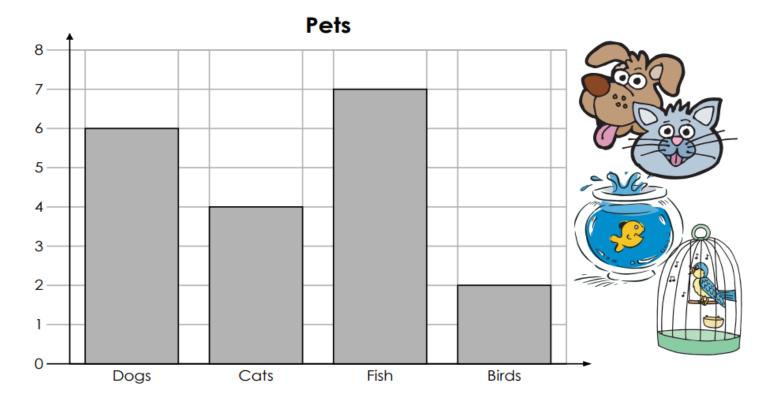
3

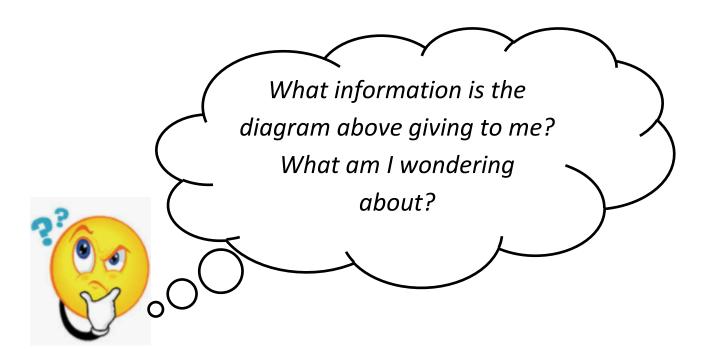
$$\frac{10}{2}$$


11

4


- A. 1
- B. 2
- C. 3
- D. 4

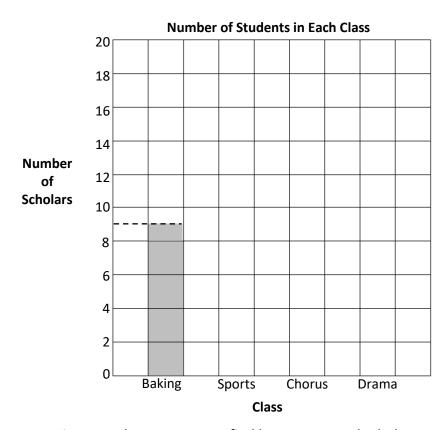

LEQ: How can I create scaled bar graphs?


Objective: I can use number lines with intervals to create scaled bar graphs.

Name:	Week 30 Day 4 Date:		
BCCS-B	Harvard	Yale	Princeton

Exploration:

Name: We				30 Da	y 4 Date:	
BCCS-B			Harva	rd	Yale	Princeto
Input (My	Turn):					
		are	diagran	ns and	show collect	ed data or
informatio	on. Bar graphs	have scales of	or		on t	he vertical line o
axis that d	lisplay certain	amounts per	catego	ry. The	e horizontal a	xis tells all the
different o	categories to t	ell what each	bar rep	oresen	its.	
	J		·			
		Fav	vorite L	unch		
Mac and C	Cheese		4			
Sandwich			7			
Pizza			10)		
			<u> </u>			


Mac and Cheese Sandwich Pizza

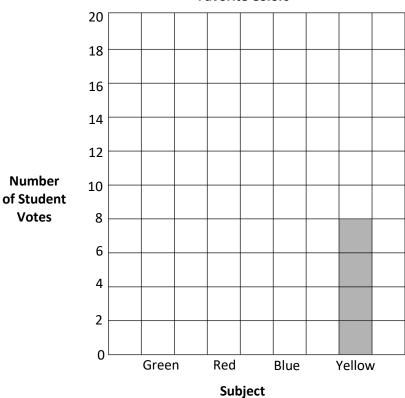
Input (My Turn):

1. This table shows the number of scholars in each class.

Number of Scholars in Each Class				
Class Number of Scholars				
Baking	9			
Sports	16			
Chorus	13			
Drama	18			

Use the table to color the bar graph. The first one has been done for you.

- a. Write a number sentence to find how many total scholars are enrolled in classes.
- b. How many fewer scholars are in sports than in chorus and baking combined?


Guided Practice (Our Turn):

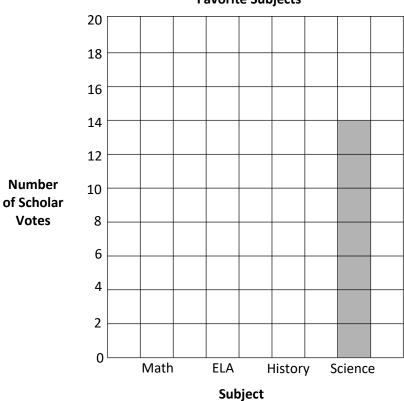
1. This table shows the favorite colors of third graders at Brighter Choice for Boys Elementary.

Favorite Colors				
Subject Number of Scholar Vote				
Green	16			
Red	11			
Blue	20			
Yellow				

Use the table to color the bar graph.

Favorite Colors

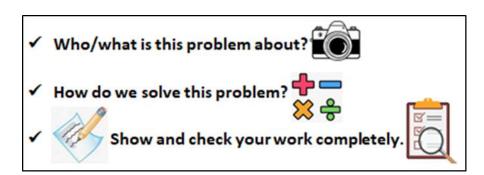
- a. How many scholars were surveyed?
- b. How many more Scholars voted for blue than for yellow?

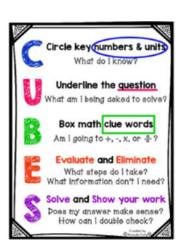

Problem Set (Your Turn):

1. This table shows the favorite subjects of third graders at KIPP Elementary.

Favorite Subjects				
Subject Number of Scholar Votes				
Math	18			
ELA	13			
History	17			
Science	?			

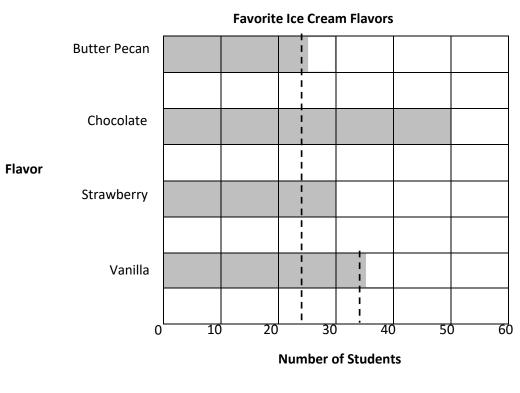
Use the table to color the bar graph.


Favorite Subjects



- c. How many scholars voted for science?
- d. How many more scholars voted for math than for science?

Name:	Week 30 Day 4 Date: _	


BCCS-B Harvard Yale Princeton

Application:

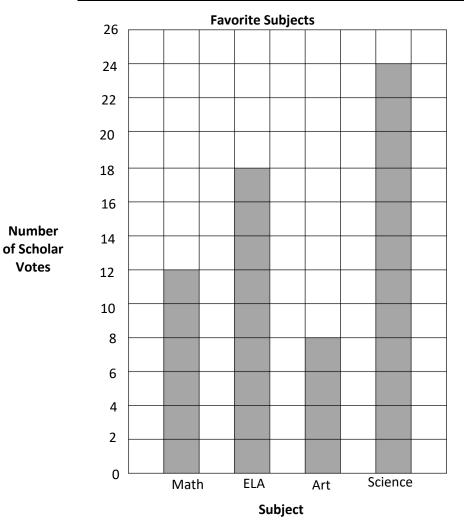
The bar graph below shows the students' favorite ice cream flavors.

a. Write a number sentence to show the total number of students who voted for butter pecan, vanilla, and chocolate.

Name:			 _

Week 30 Day 4 Date: _____

BCCS-B


Harvard

Yale

Princeton

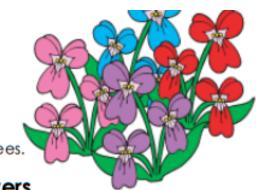
Exit Ticket: Use the graph below to fill in the chart.

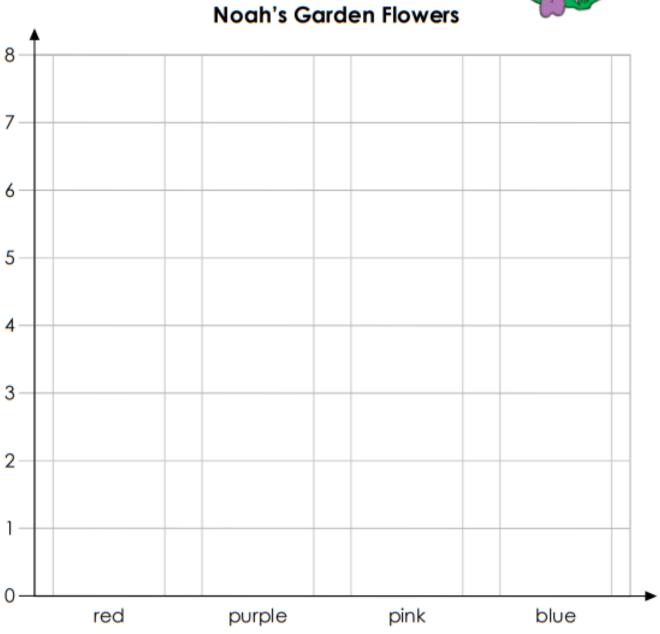
Favorite Subjects				
Subject	Number of Scholar Votes			
Math				
ELA				
History				
Science				

How many scholars were surveyed? ______ scholars were surveyed.

Number

Votes


Name:	Week 30 Day 4 Date:			
BCCS-B	Harvard	Yale	Princeton	


Homework Page 1:

Noah counts the flowers in his garden. He sees:

- 5 red flowers
- 7 purple flowers
- 3 pink flowers
- · 2 blue flowers

Make a graph to show how many flowers of each color he sees.

Harvard

Homework Page 2:

Use the bar graph you made to answer the questions.

- Did Noah see more red flowers or pink flowers?
- l._____

2. What color did Noah see the most?

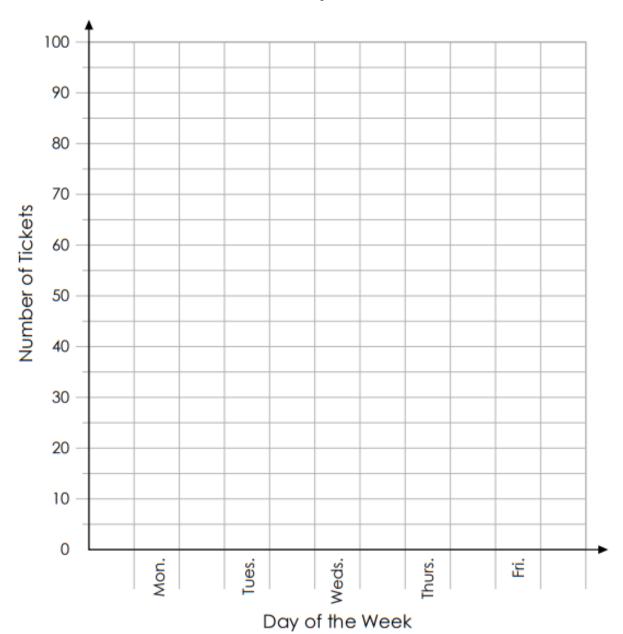
2._____


3. What color did Noah see the least?

- 3._____
- 4. How many more purple flowers than pink flowers did he see?
- 4._____
- 5. How many pink and blue flowers did he see in all?
- 5._____

LEQ: How can I solve one and two step problems involving bar graphs?

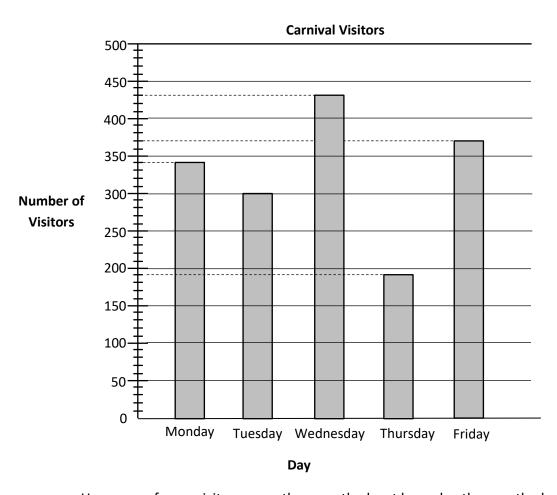
Objective: I can identify the scale and use CUBES to solve one and two step problems involving bar graphs.


Name:	Week 30 Day 5 Date:			
BCCS-B	Harvard	Yale	Princeton	

Do Now:

Esther's school sold raffle tickets last week. The table below shows the number of tickets sold each day. Use the information in the table to complete the graph.

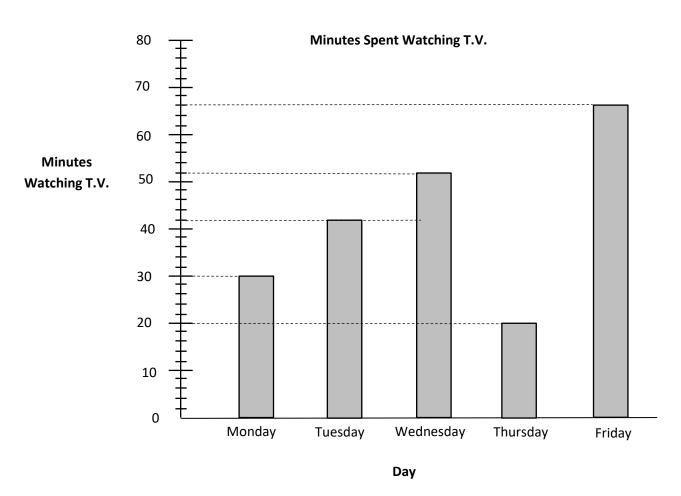
Mon.	Tues.	Weds.	Thurs.	Fri.
55	40	25	35	80


Esther's Daily Raffle Ticket Sales

Name:	Week 30 Day 5 Date:		
BCCS-B	Harvard	Yale	Princeton

Input (My Turn):

The bar graph shows the number of visitors to a carnival from Monday through Friday.


a. How many fewer visitors were there on the least busy day than on the busiest day?

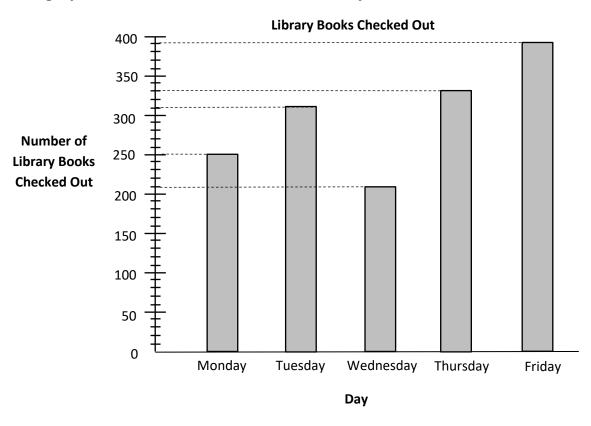
b. How many more visitors attended the carnival on Monday and Tuesday combined than on Thursday and Friday combined?

Harvard

Guided Practice (Our Turn):

The graph below shows the minutes Joseph spent watching in 5 days.

a. How many minutes of T.V. did Joseph watch on Monday and Wednesday?


b. How many more minutes of T.V. did Joseph watch on Friday than Tuesday?

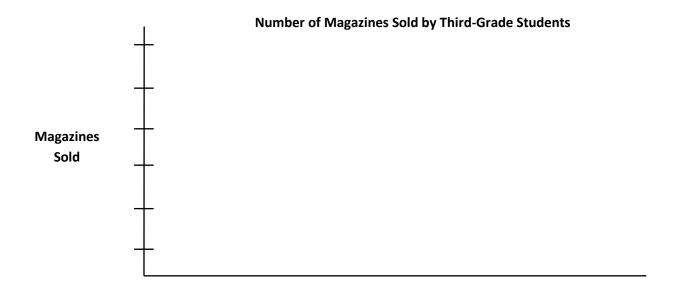
Name:	 		
BCCS-B			

Week 30 Day 5 Date: _______
Harvard Yale Princeton

Problem Set (Your Turn):

The graph below shows the number of library books checked out in five days.

c. How many books in total were checked out on Wednesday and Thursday?


d. How many more books were checked out on Thursday than on Tuesday?

Application:

The chart below shows the number of magazines sold by each student.

Student	Ben	Rachel	Jeff	Stanley	Debbie
Magazines Sold	300	250	100	450	600

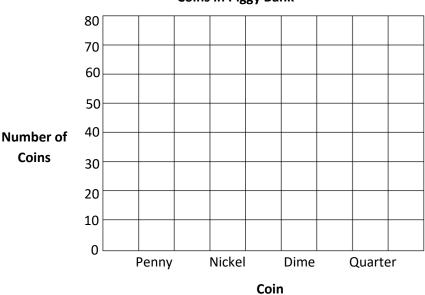
a. Use the chart to draw a bar graph below. Create an appropriate scale for the graph.

Student

- b. How many fewer magazines did Debbie sell than Ben and Stanley combined?
- c. How many more magazines did Debbie and Jeff sell than Ben and Rachel?

Harvard Yale

Princeton


Exit Ticket:

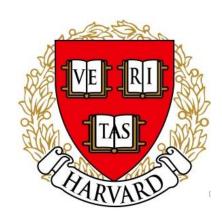
1. Naquah counts the coins in his piggy bank and records the results in the tally chart below. Use the tally marks to find the total number of each coin.

Coin	Number of Coins
Penny	30
Nickel	65
Dime	50
Quarter	90

a. Use the tally chart to complete the bar graph below. The scale is given.

Coins in Piggy Bank

- b. How many more dimes are there than pennies?
- c. How many coins does Naquah have in total?

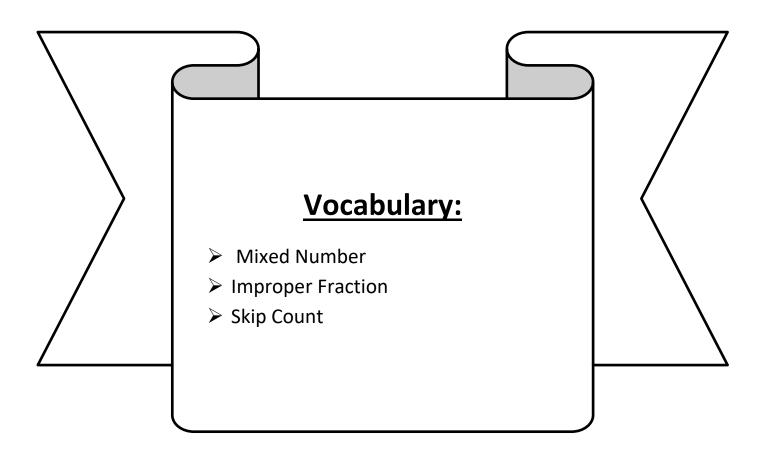


Name	

3rd Grade Math Remote Learning Packet

Week 31

Dear Educator,


My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.

(Parent Signature)	(Date)

Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

LEQ: How can I convert an improper fraction into a mixed number?

Objective: I can skip count to convert an improper fraction into a mixed number.

Name:

Week 31 Day 1 Date: _____

BCCS-B

Harvard

Yale

Princeton

Do Now:

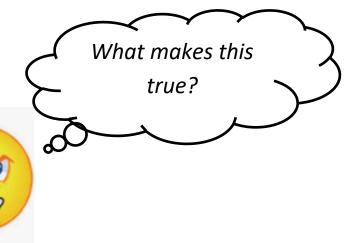
Date:

Skill: 0 - 3 Level: B

Time: Score:

Date:

Skill: 0 - 3 Level: B


Score: _ Time:

Week 31 Day 1 Date: ______ Harvard Yale Princeton

Exploration:

$$2\frac{3}{4} = \frac{11}{4}$$

$$\frac{9}{4}=2\frac{1}{4}$$

Name: Week 31 Day 1 Date:				
BCCS-B		Harvard	Yale	Princeton
Input (My Turn):				
An improper fraction	on is a fraction wi	th a		that is
greater than the		We can als	o call an impro	per fraction a
		·		
	Improper Fraction Numerator > Denominator	Mixed Number		
	$\frac{7}{3}$	\rightarrow $2\frac{1}{3}$		

Improper Fraction	Model	Mixed Number
8 3		
<u>11</u> <u>5</u>		

Name:	_ Week 31 Day	Week 31 Day 1 Date:	
BCCS-B	Harvard	Yale	Princeton
Guided Practice (Our Turn):			

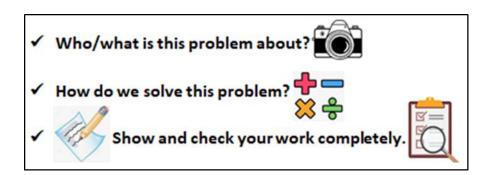
Improper Fraction	Model	Mixed Number
8 5		
$\frac{13}{6}$		

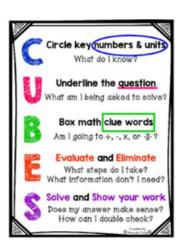
Name:	Week 31 Day 1 Date:		
BCCS-B	Harvard	Yale	Princeton

Problem Set (Your Turn):

Improper Fraction	Model	Mixed Number
8 3		
21 8		
10 6		

4.0			
Improper Fr	action	Mix	ed Number
Skip count to convert each impr	roper fraction into	a mixed numbe	er.
Input (My Turn):			
BCCS-B	Harvard	Yale	Princeton
Name:	week 31 Day	1 Date:	


improper Fraction	Mixed Number
$\frac{10}{3}$	
14 5	
7 2	


Problem Set (your Turn):

Skip count to convert each improper fraction into a mixed number.

Improper Fraction	Mixed Number
10 4	
11 5	

Name:	Week 31 Day 1 Date:			
BCCS-B	Harvard	Yale	Princeton	

Application:

Jenny is baking chocolate chip muffins for the bake sale. She sells 4 and 1 quarter muffins. How many muffins did she sell as a mixed number? Use fraction models and skip counting to show your thinking.

Name:	Week 31 Day 1 Date:		
BCCS-B	Harvard	Yale	Princeton

Exit Ticket:

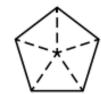
Improper Fraction	Model	Mixed Number
13		
$\frac{13}{3}$		

Skip count to convert each improper fraction into a mixed number.

Improper Fraction	Mixed Number
$\frac{20}{3}$	

BCCS-B

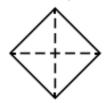
Harvard

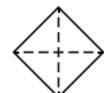

Yale

Homework:

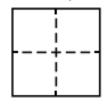
Mixed Numbers

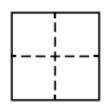
a. Color $3\frac{2}{5}$.

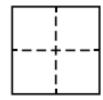


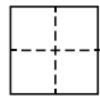


b. Color 4³/₄.

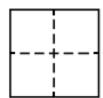




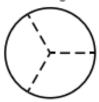


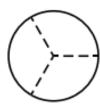


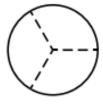
C. Color $2\frac{2}{4}$.

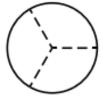


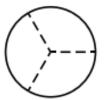
d. Color $4\frac{1}{5}$.

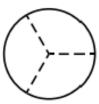




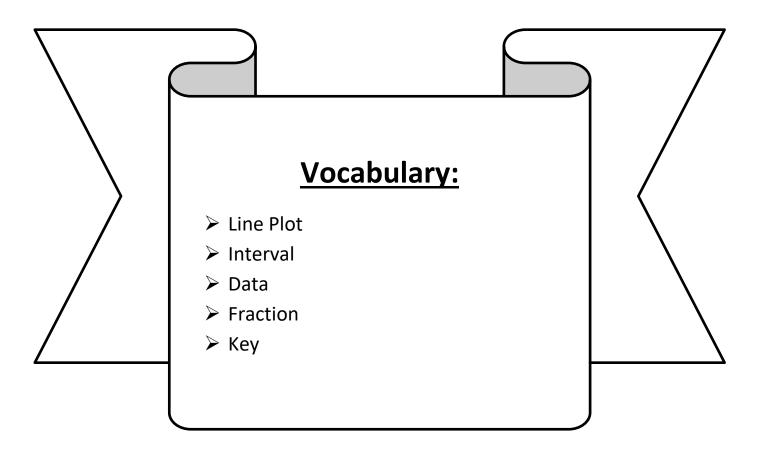





e. Color $1\frac{2}{3}$.



f. Color $3\frac{1}{2}$.



LEQ: How can I interpret measurement data from various line plots?

Objective: I can use my knowledge of fractions to interpret measurement data from various line plots.

Name: _____

Week 31 Day 2 Date: __

BCCS-B

Harvard

Yale

Princeton

Do Now:

Calculate each sum.

6

$$\begin{array}{ccc} 9 & 8 \\ + 9 & + 1 \end{array}$$

$$+\frac{1}{8}$$

$$+\frac{2}{7}$$

$$+\frac{1}{6}$$

$$+\frac{3}{2}$$

$$+\frac{3}{2}$$

$$\frac{2}{+8}$$

$$\frac{3}{+1}$$

$$+\frac{1}{4}$$

$$\frac{1}{+1}$$

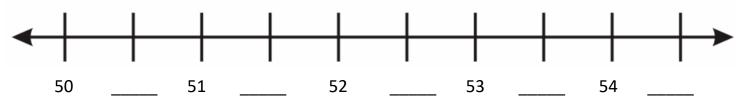
$$+\frac{1}{3}$$

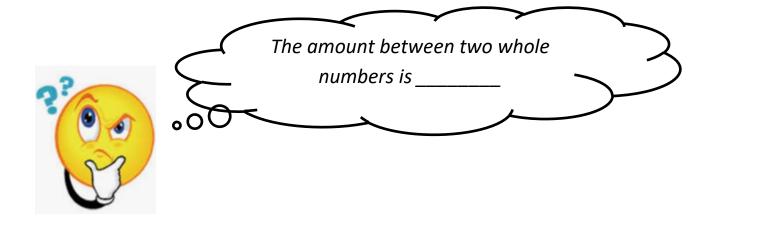
$$\frac{3}{+4}$$

$$\frac{2}{+3}$$

$$\frac{7}{+3}$$

$$\frac{1}{+7}$$


$$\begin{array}{ccc} 6 & 1 \\ \cdot 1 & + 2 \end{array}$$


$$\frac{3}{+8}$$

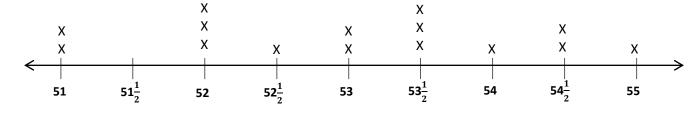
$$+\frac{1}{7}$$

$$\frac{5}{+1}$$

Exploration:

Guided Notes:

A ______ is a way to organize information, just like a bar graph! Each amount along the horizontal axis represents a category and each X tells how much of each category is represented.

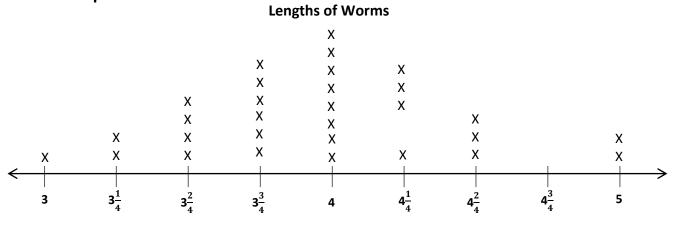

Each X represents one Х Х Х Х Х X X Х Х X X X X X X 3

Input (My Turn):

1. Coach Jordan measures the heights of the children on his third-grade basketball team in inches. The heights are shown on the line plot below.

Harvard

Heights of Children on Third-Grade Basketball Team


Height in Inches

X = 1 child

- a. How many children are on the team? How do you know?
- b. How many children are less than 53 inches tall?
- c. Coach Jordan says that the most common height for the children on his team is $53\frac{1}{2}$ inches. Is he right? Explain your answer.
- d. Coach Jordan says that the player who does the tip-off in the beginning of the game has to be at least 54 inches tall. How many children could do the tip-off?

Guided Practice (Our Turn):

2. Ms. Ogden's class is studying worms. The lengths of the worms in inches are shown in the line plot below.

Length in Inches

X = 1 worm

- a. How many worms did the class measure? How do you know?
- b. Caleb says that there are more worms $3\frac{3}{4}$ inches long than worms that are $3\frac{2}{4}$ and $4\frac{1}{4}$ inches long combined. Is he right? Explain your answer.

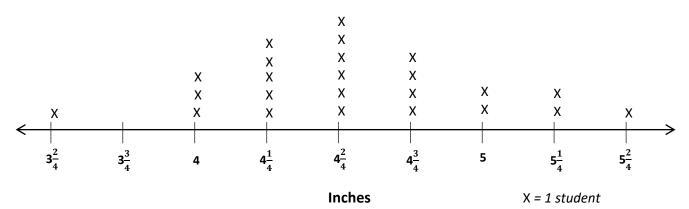
c. Mic'Ky finds a worm hiding under a leaf. He measures it, and it is $4\frac{3}{4}$ inches long. Plot the length of the worm on the line plot.

Name: _____

Week 31 Day 2 Date:

BCCS-B

Harvard

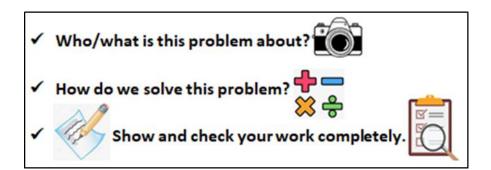

Yale

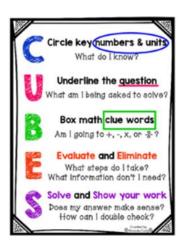
Princeton

Problem Set (Your Turn):

3. Ms. Maisenbacher measures the lengths of her third-grade students' hands in inches. The lengths are shown on the line plot below.

Lengths of Hands of Third-Grade Students



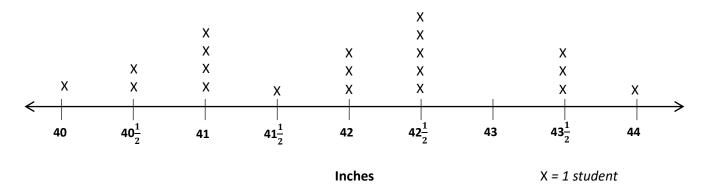

a. How many students are in Ms. Maisenbacher's class? How do you know?

b. How many students' hands are longer than $4\frac{2}{4}$ inches?

c. Asante says that more students' hands are $4\frac{2}{4}$ inches long than 4 and $5\frac{1}{4}$ inches combined. Is he right? Explain your answer.

Name:	Week 31 Day 2 Date:			
BCCS-B	Harvard	Yale	Princeton	

Application:


Gionni measures the height of his bean plant on Monday and again on Friday. He says that his bean plant grew 10 quarter inches. His science partner records "2" 1/2 inches on his growth chart for the week. Is his partner right? Why or why not?

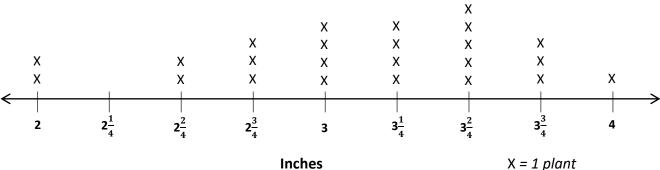
Name:	Week 31 Day 2 Date:			
BCCS-B	Harvard	Yale	Princeton	

Exit Ticket:

Ms. Cunningham measures the heights of the students in her kindergarten class. The heights are shown on the line plot below.

Heights of Students in Ms. Cunningham's Kindergarten Class

a. How many students in Ms. Cunningham's class are exactly 41 inches tall?


b. How many students are in Ms. Cunningham's class? How do you know?

c. How many students in Ms. Cunningham's class are more than 42 inches tall?

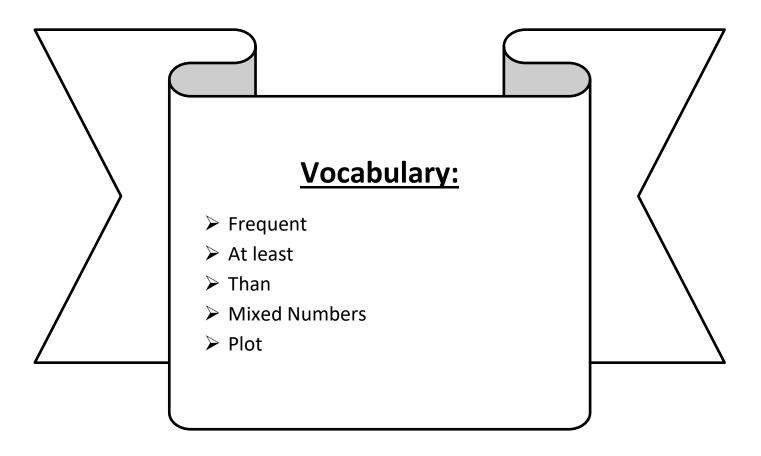
Homework:

1. Mr. Pierce's class is studying plants. They plant seeds in clear plastic bags and measure the lengths of the roots. The lengths of the roots in inches are shown in the line plot below.

Lengths of Plants' Roots

X = 1 plant

How many roots did Mr. Pierce class measure? How do you know?


b. Zaymir says that the 3 most frequent measurements in order from shortest to longest are $3\frac{1}{4}$ inches, $3\frac{2}{4}$ inches, and $3\frac{3}{4}$ inches. Do you agree? Explain your answer.

Mason says that 7 plants measure fewer than 3 inches in length. Is he right?

LEQ: How can I represent measurement data with line plots?

Objective: I can analyze measurement data and plot it to represent measurement data with line plots.

Name: ______BCCS-B

Week 31 Day 3 Date: ____

Harvard

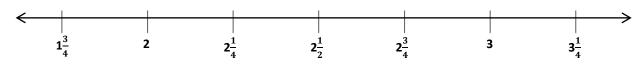
Yale

Princeton

Do Now:

Calculate each difference.

$$- \begin{array}{r} 690 \\ - 40 \end{array}$$


Input (My Turn):

Mrs. Wise's class grows beans for a science experiment. The students measure the heights of their bean plants to the nearest $\frac{1}{4}$ inch and record the measurements as shown below.

Heights of Bean Plants (in Inches)					
$2\frac{1}{4}$	$2\frac{3}{4}$	$3\frac{1}{4}$	$1\frac{3}{4}$	$1\frac{3}{4}$	
$1\frac{3}{4}$	3	$2\frac{1}{2}$	$3\frac{1}{4}$	$2\frac{1}{2}$	
2	$2\frac{1}{4}$	3	$2\frac{1}{4}$	3	
$2\frac{1}{2}$	$3\frac{1}{4}$	$1\frac{3}{4}$	$2\frac{3}{4}$	2	

a.	Use the	data t	o comp	lete the	line i	olot belo	ow.

Title:

Label:

X =

Input (My Turn):

b. How many plants were measured?

c. How many bean plants are <u>at least</u> $2\frac{1}{4}$ inches tall?

d. How many bean plants are <u>taller than</u> $2\frac{3}{4}$ inches?

e. What is the <u>most frequent</u> measurement? How many bean plants were plotted for this measurement?

Guided Practice (Our Turn):

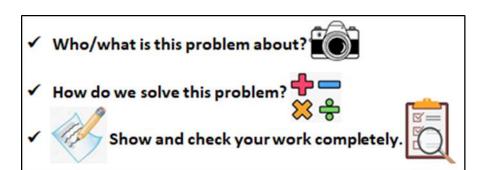
Mrs. Dietzman's students build a model of their school's neighborhood out of blocks. The students measure the heights of the buildings to the nearest $\frac{1}{4}$ inch and record the measurements as shown below.

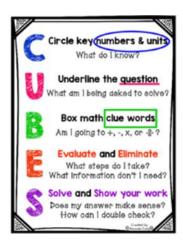
Heights of Buildings (in Inches)					
$3\frac{1}{4}$	$3\frac{3}{4}$	$4\frac{1}{4}$	$4\frac{1}{2}$	$3\frac{1}{2}$	
4	3	$3\frac{3}{4}$	3	$4\frac{1}{2}$	
3	$3\frac{1}{2}$	$3\frac{3}{4}$	$3\frac{1}{2}$	4	
$3\frac{1}{2}$	$3\frac{1}{4}$	$3\frac{1}{2}$	4	$3\frac{3}{4}$	
3	$4\frac{1}{4}$	4	$3\frac{1}{4}$	4	

a.	Use the data	to complete the	line plot below.
----	--------------	-----------------	------------------

Title: _____

Problem Set (Your Turn):


b. How many building were measured?


c. How many buildings are $4\frac{1}{4}$ inches tall?

d. How many buildings are less than $3\frac{1}{2}$ inches?

e. How many building are at least 4 inches tall?

f. What is the most frequent measurement? How do you know?

Application:

The chart shows the lengths of straws measured in Mr. Han's class.

Straw Lengths (in Inches)					
3	4	$4\frac{1}{2}$	$2\frac{3}{4}$	$3\frac{3}{4}$	
$3\frac{3}{4}$	$4\frac{1}{2}$	$3\frac{1}{4}$	4	$4\frac{3}{4}$	
$4\frac{1}{4}$	5	3	$3\frac{1}{2}$	$4\frac{1}{2}$	
$4\frac{1}{2}$	4	$3\frac{1}{4}$	5	$4\frac{1}{4}$	

- a. How many straws were measured? Explain how you know.
- b. What is the smallest measurement on the chart? The greatest?
- c. Were the straws measured to the nearest inch? How do you know?

Name:			

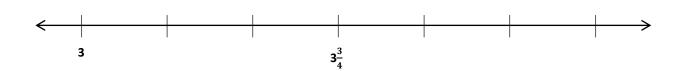
Week 31 Day 3 Date:

BCCS-B

Harvard

Yale

Princeton

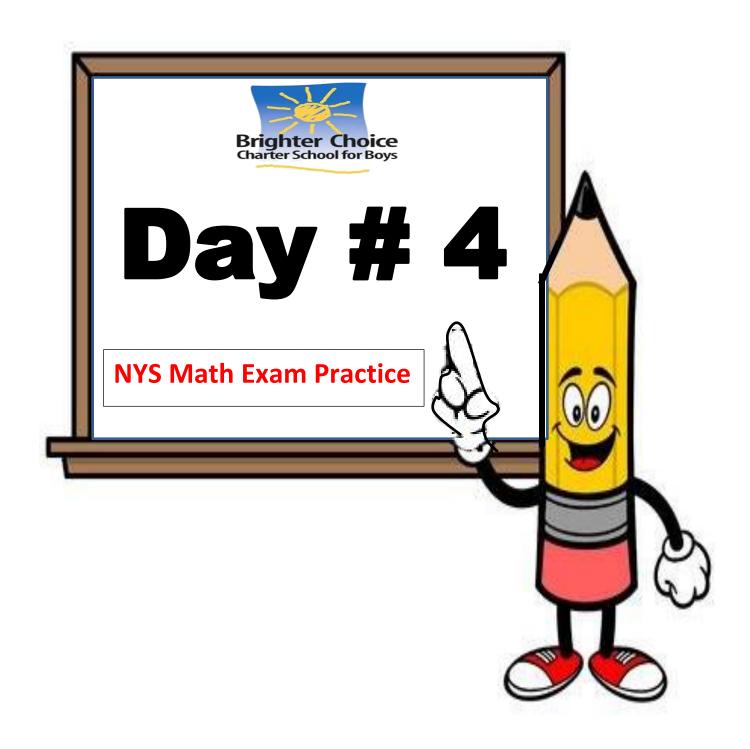

Exit Ticket:

Scientists measure the growth of mice in inches. The scientists measure the length of the mice to the nearest $\frac{1}{4}$ inch and record the measurements as shown below.

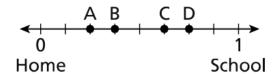
Lengths of Mice (in Inches)				
3 1/4	3	$3\frac{1}{4}$	$3\frac{3}{4}$	4
$3\frac{3}{4}$	3	$4\frac{1}{2}$	$4\frac{1}{2}$	$3\frac{3}{4}$
4	$4\frac{1}{4}$	4	$4\frac{1}{4}$	4

Label each tick mark. Then, record the data on the line plot below.

Title:



Label:


X = 1 mouse

lame:	_ Week 31 Day	/ 3 Date:	
BCCS-B	Harvard	Yale	Princetor
lomework:			
Mak	ing a Line F	Plot	
Miss Smith is a music teacher. She g quiz about famous composers. The			and a
her students received on the quiz.	iisi Delow shows ine .	SCOIOS S	2000
6, 6, 5, 4, 6, 4, 5, 3, 6,	0, 1, 6, 3, 3,	6, 5	A
	352 AROON 152		2 2 ×
Use the data on the above to make label the axis, write a title, and use X			rs on the axis,
A200300			
title:		-	
▼ 1 1		1	
title:	1 1	I	+
▼ 1 1	- 1	1	-
▼ 1 1	3?	1	
axis label:		-	—
axis label:How many students scored exactly :	nan 3?	-	—

What score did the highest number of students receive?

1. The distance between Liam's home and his school is exactly 1 mile, as shown on the number line below.

Liam buys a snack at a store that is $\frac{3}{8}$ mile from his home. What point on

the number line shows the location of the store?

- A point A
- **B** point B
- C point C
- D point D
- 2. Kay and Juanita each have a garden of the same size and shape.
 - Kay grows flowers in $\frac{1}{6}$ of her garden.
 - Juanita grows flowers in $\frac{1}{3}$ of her garden.

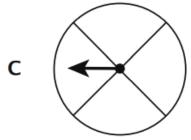
Which statement shows a correct comparison of the sections of flowers grown in Kay's garden and Juanita's garden?

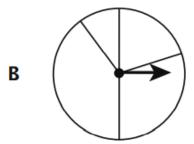
- **A** $\frac{1}{6} > \frac{1}{3}$
- **B** $\frac{1}{6} < \frac{1}{3}$
- **C** $\frac{1}{3} = \frac{1}{6}$
- **D** $\frac{1}{3} + \frac{1}{6}$

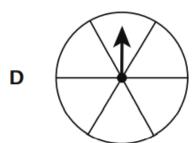
3. Which number line shows the fraction $\frac{1}{3}$ plotted correctly?

- 4. Theo divided a garden equally into 6 parts. He planted seeds in 5 of the parts. In what fraction of the garden did Theo plant seeds?
 - A $\frac{1}{6}$
 - **B** $\frac{1}{5}$
 - $c = \frac{5}{6}$
 - $D = \frac{6}{5}$
- 5. Jaime has a small container that holds exactly $\frac{1}{4}$ cup of dog food. How many times should Jaime fill the container and pour it into the dog's bowl to make sure the dog gets exactly $\frac{1}{2}$ cup of food?
 - A $\frac{1}{4}$
 - $\mathbf{B} \qquad \frac{1}{2}$
 - **C** 2
 - **D** 4

6. Gianna cuts a ribbon into equal pieces as shown below.



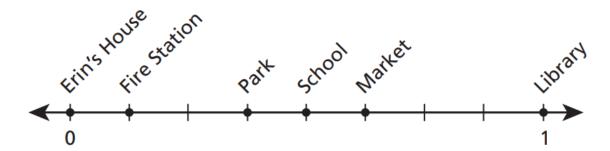

She uses 4 pieces of the ribbon for a project. What fraction of the ribbon does Gianna use for the project?


Explain how you found your answer.

7. The Diaz family used a spinner to play a game. The spinner was in the shape of a circle. Each section of the spinner was $\frac{1}{4}$ of the whole circle. Which picture shows a spinner that the Diaz family used?

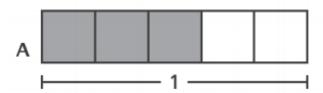
A (

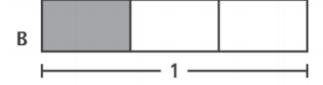
- 8. Which fraction is equivalent to 4?
 - **A** $\frac{1}{4}$
 - $\mathbf{B} \qquad \frac{8}{4}$
 - $C = \frac{4}{4}$
 - **D** $\frac{4}{1}$
- 9. Two teachers each buy pizzas for a party. All of the pizzas are the same size.
 - Teacher A's pizzas were cut into 6 equal slices.
 - Teacher B's pizzas were cut into 8 equal slices.

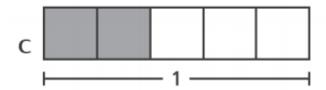

Which teacher's pizzas were cut into larger slices? Use what you know about fractions to explain your answer.

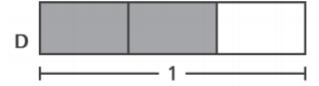
Answer

- 10. Which two fractions should be plotted at the same location on a number line?
 - A $\frac{3}{4}$ and $\frac{4}{8}$
 - $\mathbf{B} \qquad \frac{1}{4} \text{ and } \frac{2}{8}$
 - C $\frac{2}{4}$ and $\frac{4}{6}$
 - $\mathbf{D} \qquad \frac{1}{2} \text{ and } \frac{2}{6}$

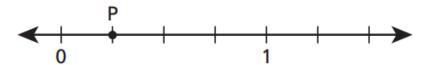

11.	1. The shape below is shaded to represent a fraction.				
	Which shape is shaded to represent a fraction equivalent to the shape shown above?				
	A C				
	B D				
12.	12. Two families buy large sandwiches of the same size. Family A shares one sandwich equally among 4 people, as represented in the picture below.				
	Family B shares one sandwich equally between 2 people.				
	Will a person from Family A get the same amount or a different amount of a sandwich as a person from Family B? Be sure to include what you know about fractions or parts of a whole in your answer.				
	Explain your answer.				


13. Erin walked 1 mile from her house to the library. Along the way, she passed several places shown on the number line below.

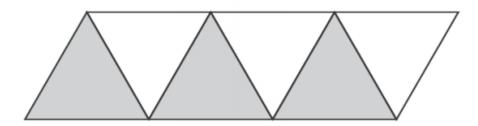



Which place is $\frac{4}{8}$ mile from Erin's house?

- A the fire station
- **B** the park
- C the school
- **D** the market
- **14.** Which of these is shaded to represent $\frac{2}{3}$?



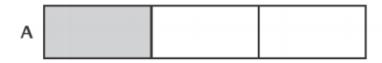
15. Which fraction does point P represent on the number line below?



- A $\frac{1}{6}$
- $\mathbf{B} \quad \frac{2}{6}$
- $C \frac{1}{4}$
- $D \frac{2}{4}$
- 16. Which fraction is equal to $\frac{2}{8}$?
 - A $\frac{8}{2}$
 - $\mathbf{B} \quad \frac{1}{2}$
 - $c^{\frac{2}{4}}$
 - $D \frac{1}{4}$
- 17. Four different recipes were used by students to bake cookies for a bake sale. The number line below shows the fraction of a cup of milk needed in each recipe.

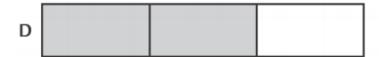
- Which recipe needs $\frac{3}{8}$ cup of milk?
- A Recipe A
- **B** Recipe B
- C Recipe C
- D Recipe D

18. The figure below is divided into equal-sized parts.

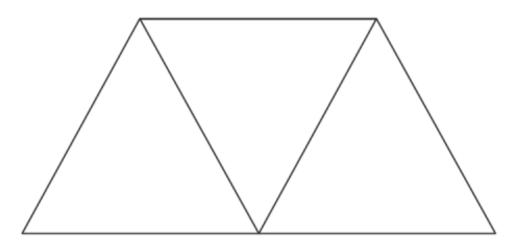


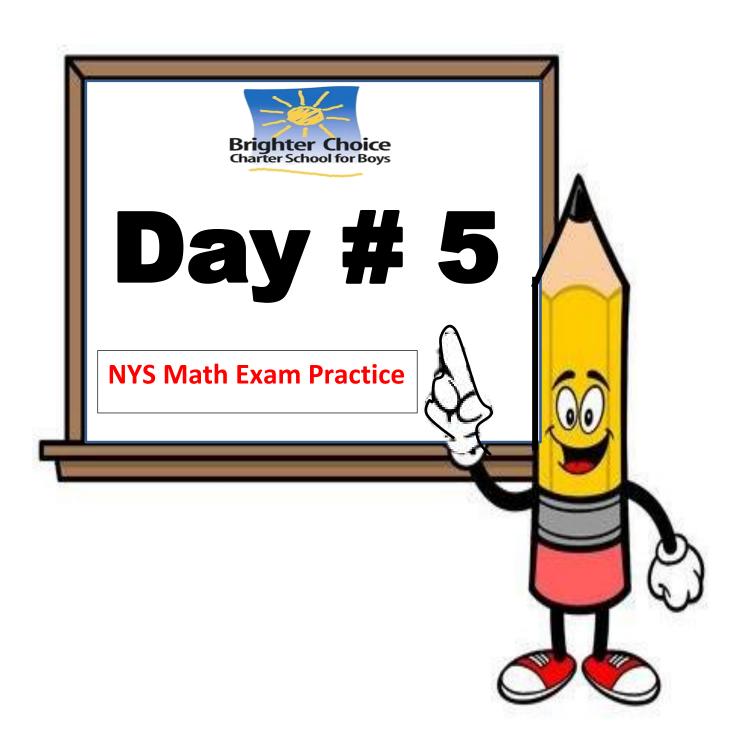
Which fraction is represented by the shaded parts of the figure?

- A $\frac{1}{3}$
- $B \frac{3}{3}$
- $C \frac{3}{6}$
- $D\ \frac{6}{3}$
- 19. The fraction strip shown below is shaded to represent a fraction.

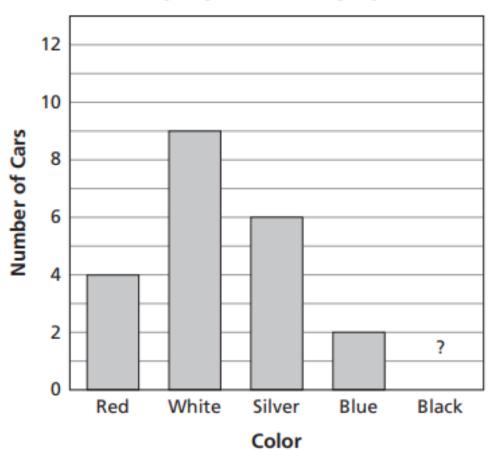


Which fraction strip is shaded to represent a fraction equal to the fraction strip shown above?



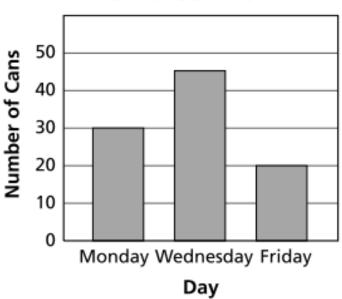

- 20. Which fraction comparison is not correct?
 - A $\frac{1}{3} < \frac{2}{3}$
 - B $\frac{3}{4} < \frac{1}{4}$
 - $C \frac{2}{3} > \frac{2}{8}$
 - $D \frac{5}{6} > \frac{5}{8}$
- Ved drew the shape below by combining exactly three triangles of the same size and shape.

What fraction of the area of the whole shape is each triangle?


Answer _____

Explain how you know your answer is correct.

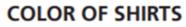
1. The bar graph shows the numbers and colors of cars in a parking lot.

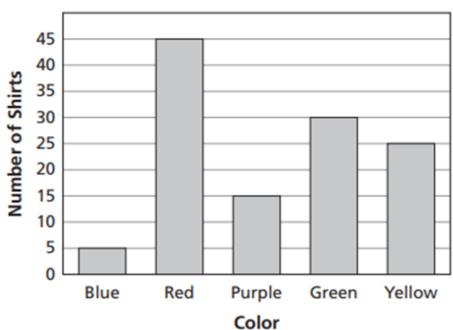


The total number of silver and black cars equals the total number of red, white, and blue cars. How many black cars are in the parking lot?

- A 9
- **B** 10
- **C** 15
- **D** 30

The students in Mr. Gazer's class are collecting cans for recycling. The bar graph below shows the number of cans they collected for each of three days.

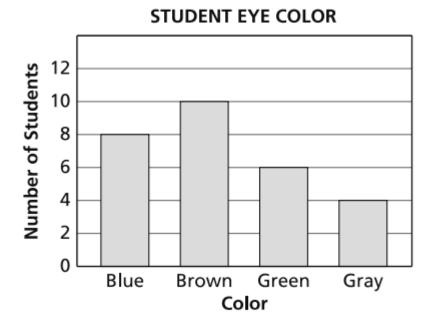




How many more cans were collected on Wednesday than on Friday?

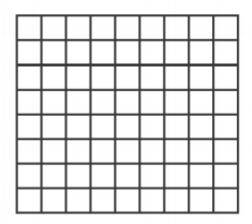
- A 15
- **B** 20
- C 25
- **D** 45

3. The graph below shows the number of shirts of each color in a store.



How many more red shirts than the total number of blue shirts and yellow shirts are in the store?

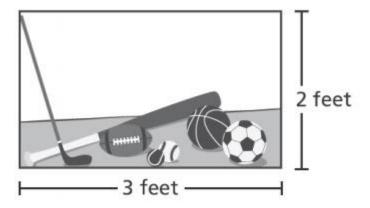
- A 15
- **B** 30
- C 40
- **D** 45


4. The bar graph below shows the information third grade students collected about the eye color of students in their classroom.

How many **fewer** students have green eyes than students that have blue eyes and brown eyes combined?

Show your work.

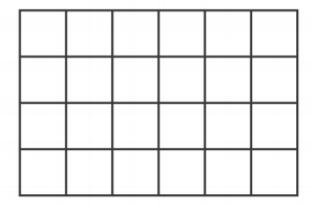
5. The diagram below represents a wall Kim painted in her basement.



KEY			
= 1 square	foot		

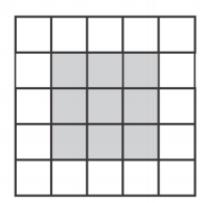
What is the area, in square feet, of the wall Kim painted?

- A 17
- **B** 34
- C 64
- **D** 72


6. Kelly has a rectangular poster in her room. The poster is shown below.

What is the area, in square feet, of Kelly's poster?

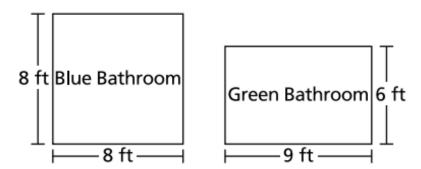
- A 5
- **B** 6
- C 10
- **D** 12


7. The figure below is tiled with squares.

KEY		
	= 1 square unit	

Which expression could be used to find the area of this figure?

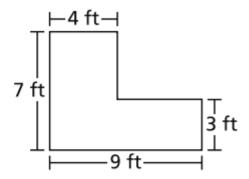
- $A 4 \times 6$
- B 4+6
- $C 4 \times 4 \times 6 \times 6$
- D 4+4+6+6
- 8. Brandon used square tiles to find the area of the shaded part of the picture below.



KEY		
	= 1 square unit	

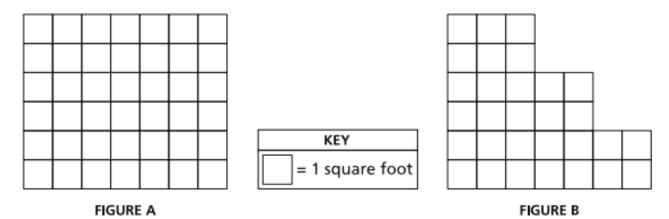
What is the area of the shaded part of the picture?

- A 3 square units
- B 6 square units
- C 8 square units
- D 9 square units


9. The sizes of two bathroom floors in Beth's house are shown below.

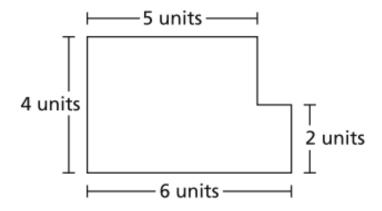
Beth says that the area of the floor of the green bathroom is larger than the area of the floor of the blue bathroom. Is Beth's statement true? Why or why not?

Explain your answer.


10. The shape of Cindy's flower garden is shown below.

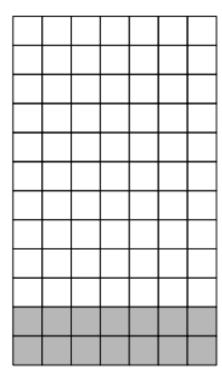
What is the area, in square feet, of Cindy's flower garden?

- A 23
- **B** 32
- **C** 43
- **D** 47


11. Two figures are shown below.

What is the difference, in square feet, between the area of Figure A and the area of Figure B?

Explain how you found your answer.			


12. The figure below was made by combining two rectangles.

What is the total area, in square units, of the figure?

- **A** 17
- **B** 20
- **C** 22
- **D** 32

13. The figure below represents a floor covered with white tiles and gray tiles.

KEY		
=	1 squa	re unit

Which expression could be used to find the area, in square units, of the entire floor?


A
$$(12+7) \times (12+7)$$

C
$$(10+7) \times (2+7)$$

B
$$(12 \times 7) + (12 \times 7)$$

D
$$(10 \times 7) + (2 \times 7)$$

14. The array below represents a product.

Which expression can be used to find the product represented by the array?

A
$$4 + 3$$

B
$$4+4+4+4$$

D
$$3 \times 3 \times 3 \times 3$$