Name

\qquad
Brighter Choice
Charter School for Boys

$5^{\text {th }}$ Grade Math Remote Learning Packet

Week 30

Dear Educator,
My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.
(Date)
Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

Name: \qquad Week 30 Day 1 Date: \qquad
BCCS-Boys Stanford MIT

Do Now

Find the volume of the figures.

L: \qquad cm W: \qquad cm

H : \qquad cm

Volume: \qquad cm^{3}

L: \qquad cm

W: \qquad cm

H : \qquad cm

Volume: \qquad cm^{3}

Area Review

Area Formula

Input Activity

Problem 1

Margo is designing a label. The dimensions of the label are $3 \frac{1}{2}$ inches by $1 \frac{1}{4}$ inches. What is the area of that label?

Step 1: With your ruler, draw a rectangle that has a length of $3 \frac{1}{2}$ and a width of $1 \frac{1}{4}$.

Step 2: Label the length and width.
Step 3: Use the area formula (length x width) to find the area of the rectangle.

- Change the mixed numbers to improper fractions
- Multiply numerators first, then denominators second
- Reduce when necessary.

Measure each rectangle to the nearest $\frac{1}{4}$ inch with your ruler, and label the dimensions. Use the area model to find each area.

Problem 2

Area $=$ Length \mathbf{x} Width

Problem 3

Area $=$ Length \mathbf{x} Width

Problem 4

Area $=$ Length \mathbf{x} Width

Problem 5

Area $=$ Length \mathbf{x} Width

Problem 6

Area $=$ Length \mathbf{x} Width

Problem 7

Area $=$ Length \mathbf{x} Width

Problem 8

Find the area of rectangle with the following dimensions.

$$
2 \frac{1}{2} \mathrm{yd} \times 1 \frac{3}{5} \mathrm{yd}
$$

Problem 9

Find the area of a rectangle $1 \frac{1}{5}$ inches $\times 1 \frac{3}{2}$ inches.

Problem 10

Find the area of a rectangle $\frac{5}{4} \mathrm{~km} \times \frac{12}{5} \mathrm{~km}$.

Problem Set

Find the area of the following rectangle.

$$
1 \frac{12}{2} \mathrm{~m} \times 1 \frac{1}{5} \mathrm{~m}
$$

Answer: \qquad m

Application Problem

A rectangular bulletin board is $\frac{1}{5}$ meters wide and $\frac{5}{8}$ meters long. What is the area of the bulletin board?

Answer: \qquad m^{2}

Exit Ticket

Find the area of the following rectangles.

$$
\frac{7}{5} \mathrm{~mm} \times 3 \frac{4}{2} \mathrm{~mm}
$$

Answer: mm^{2}

Name: \qquad
BCCS-Boys
Week 30 Day 2 Date: \qquad
Stanford MIT

Do Now

Find the volume of the following figure.

Volume: cm^{3}

Mod 5 Mid-Mod SPA Review

Tell the volume of each solid figure made of inch cubes. Specify the correct unit of measure.

Problem 1

$\mathrm{L}=$ \qquad
$W=$ \qquad
$\mathrm{H}=$ \qquad

Volume = \qquad

Problem 2

$\mathrm{L}=$ \qquad
$\mathrm{W}=$ \qquad
$H=$ \qquad

Volume = \qquad

Problem 3

$$
\begin{aligned}
& \mathrm{L}= \\
& \mathrm{W}= \\
& \mathrm{H}= \\
& \text { Volume }=
\end{aligned}
$$

Problem 4

$$
\mathrm{L}=
$$

\qquad

$$
W=
$$

$\mathrm{H}=$ \qquad

Volume =

Find the value of the following expressions.

$$
\begin{gathered}
\text { Problem 5 } \\
5 \times[3+(12-9)] \div 10
\end{gathered}
$$

Answer: \qquad

$$
\begin{gathered}
\text { Problem 6 } \\
16 \div 4+3 \times 5
\end{gathered}
$$

Find the volume of the following prisms.
Problem 7

Volume: \qquad

Problem 8

Volume:

Problem 9

What operation would you need to solve first?

$$
42 \div 6+7-6(13-4)
$$

A. $42 \div 6$
B. $6+7$
C. 6×13
D. $13-4$

Problem 10

Kazier completely filled a box with cubes. As he filled the box he counted the number of cubes he used to fill the box. What type of measurement is represented by the number of cubes Kazier counted?
A. volume
B. height
C. area
D. width

Problem 11

Which expression is equivalent to the expression below?

$$
4+[(5 \times 3)-2]-3
$$

A. $4+20-3$
B. $4+13-3$
C. $4+18-3$
D. $4+10-3$

Problem 12

Which expression is equivalent to 60?
A. $50+10-6$
B. $20 \times 2+(10+30)$
C. $(16 \times 2)+(7 \times 4)$
D. $100-5 \times(2+10)$

Problem 13

Marley constructed a robot for his science fair project.
The dimensions of the robot's body were 12 feet by 5 feet by 4 feet. What was the volume of his robot's body?
Answer: \qquad feet ${ }^{3}$

Problem 14

What is the volume of the irregular shape?

\qquad cubic units

Problem 15
 What is the volume of the irregular shape?

Answer: $i n^{3}$

Problem 16

Prism A is shown below. The volume of Prism B is $\underline{15}$ cubic centimeters less than the volume of Prism A.

Prism A

What is the volume of Prism B?

Answer: \qquad cm^{3}

Name: \qquad
BCCS-Boys Week 30 Day 4 Date: \qquad
Nam

Module 5 Mid-Module Assessment

Directions: Make sure to show all your work and complete each part. Good luck! ©

Part I: Multiple Choice

1. Find the volume. (5.MD.4)
A. 9 cubic units
B. 11 cubic units
C. 30 cubic units

D. 45 cubic units
2. What is the value of the expression below? (5.OA.1)

$$
4+[4 \times(5-2)] \div 2
$$

A. 10
B. 4
C. 2
D. 12
3. Find the volume. (5.MD.4)

A. 14
B. 32
C. 64
D. 96
4. Tyler completely filled the box shown below with cubes. He then counted the number of cubes that he used to fill the box. What type of measurement is represented by the number of cubes Tyler counted? (5.MD.3a)

A. area
B. height
C. volume
D. perimeter
5. Which expression is equivalent to 32 ? (5.0A.1)
A. $(30+6) \div 3$
B. $2 \times(9+7)$
C. $9 \times(3+5)$
D. $6+2 \times 4$
6. James made the box shown below. The box was shaped like a right rectangular prism. (5.MD.5)

What was the volume in cubic centimeters of the box?
A. $40 \mathrm{~cm}^{3}$
B. $44 \mathrm{~cm}^{3}$
C. $18 \mathrm{~cm}^{3}$
D. $160 \mathrm{~cm}^{3}$
7. What is the solution to expression below (5.0A.1)
A. 14

$$
4+[(5 \times 3)-2]-3
$$

B. 15
C. 16
D. 17
8. Sylvester has a box whose length is 12 cm , height 8 cm , and width 6 cm . Find the volume of a box. (5.MD.5)
A. $540 \mathrm{~cm}^{3}$
B. $567 \mathrm{~cm}^{3}$
C. $576 \mathrm{~cm}^{3}$
D. $26 \mathrm{~cm}^{3}$
9. What operation must be done first when solving the following expression? (5.OA.1)

$$
8+24 \div(2 \times 6)-4
$$

A. $8+24$
B. 2×6
C. $24 \div 2$
D. 6-4
10. What is the volume of the following rectangular prism? (5.MD.3b)

A. 24
B. 12
C. 22
D. 20

PART II: Short Answer: Show all of your work in this part of the assessment.
11. Label the length, width, and height of the following figure. (5.MD.4)

$$
\begin{aligned}
& \mathrm{L}= \\
& \mathrm{W}= \\
& \mathrm{H}= \\
&
\end{aligned}
$$

What is the volume, in cubic centimeter, of the figure below?
\qquad cm^{3}
12. Solve the following problem. (5.0a.1)

$$
5 \times(3+4)+(7 \times 2)
$$

Answer
13. Prism X is shown below. The volume of Prism Y is $\mathbf{1 0}$ cubic centimeters greater than the volume of Prism X. (5.MD.5b)

Prism X

What is the volume of Prism Y?

Answer \qquad cm^{3}
14. What is the volume of the two overlapping figures? (5.mD.5c)

Answer: \qquad i^{3}

Name: \qquad Week 30 Day 5 Date: \qquad
BCCS-Boys Stanford MIT

Do Now

Find the volume of the figures.
a.

L: \qquad cm

W: \qquad cm

H : \qquad cm

Volume: \qquad cm^{3}
b.

L: \qquad cm

W: \qquad cm

H: \qquad cm

Volume: \qquad cm^{3}

Input Activity

Problem 1

George decided to paint a wall with a window. The window is $3 \frac{1}{2} \mathrm{ft}$. by $2 \frac{1}{3} \mathrm{ft}$. rectangles. Find the area the paint needs to cover.

Answer: \qquad ft^{2}

Problem 2

Mr. Johnson needs to buy sod for his front lawn. If the lawn measures $1 \frac{2}{3} \mathrm{ft}$. by $2 \frac{1}{2} \mathrm{ft}$, how many square feet of sod will he need?
\qquad ft^{2}

Problem 3

Mr. Moore made his wife a rectangular vegetable garden. The width is $2 \frac{2}{3} \mathrm{ft}$, and the length is $2 \frac{1}{4} \mathrm{ft}$. What is the area of the garden?

Answer: \qquad ft^{2}

Problem 4

Mr. Pierce wants to paint menus on the wall of his café in chalkboard paint. Each menu will measure 6 - ft wide and $5 \frac{1}{2} \mathrm{ft}$ tall. What is the area of each menu?
\qquad ft^{2}

Problem 5

Mr. Stallings needs to buy seed for his backyard lawn. If the lawn measures $3 \frac{1}{2} \mathrm{ft}$. by $2 \frac{1}{3} \mathrm{ft}$, how many square feet of seed will he need to cover the entire area?

Answer: \qquad ft^{2}

Problem 6

The length of a flowerbed is 4 times as long as its width. If the width is $\frac{3}{8}$ meter, what is the area?

Answer: \qquad m^{2}

Problem Set

Some wire is used to make 3 rectangles: A, B, and C . Rectangle B 's dimensions are $\frac{3}{5} \mathrm{~cm}$ larger than Rectangle A's dimensions, and Rectangle C's dimensions are $\frac{3}{5} \mathrm{~cm}$ larger than Rectangle $\mathrm{B}^{\prime} \mathrm{s}$ dimensions. Rectangle A is 2 cm by $1 \frac{1}{5} \mathrm{~cm}$. What is the area of each rectangle?

Application Problem

Mrs. DeRouville grows herbs in square plots. Her basil plot measures $\frac{5}{8} \mathrm{yd}$ on each side. Find the total area of the basil plot.

Answer:

Exit Ticket

Wheat grass is grown in planters that are $3 \frac{1}{2}$ inch by $\frac{3}{4}$ inch. What is the area covered by the planters?
\qquad in^{2}

Name
Brighter Choice
Charter School for Boys

$5^{\text {th }}$ Grade Math Remote Learning Packet
 Week 31

Dear Educator,
My signature is proof that I have reviewed my scholar's work and supported him to the best of my ability to complete all assignments.
(Parent Signature)
(Date)
Parents please note that all academic packets are also available on our website at www.brighterchoice.org under the heading "Remote Learning." All academic packet assignments are mandatory and must be completed by all scholars.

Name: \qquad Week 31 Day 1 Date: \qquad
BCCS-Boys Stanford MIT

Do Now

The length of a swimming pool is 2 times its width. If the width is $\frac{7}{8}$ yards long, what is the area of the of the pool in square yards?
\qquad gds. ${ }^{2}$

Input Activity

Quadrilaterals
Polygon- a \qquad 2 dimensional \qquad with
\qquad sides

Quadrilaterals - \qquad sided \qquad

Examples of Quadrilaterals: \qquad
\qquad
\qquad , \qquad , \qquad ,
\qquad
\qquad

Key Terms

Congruent - a shapes \qquad are \qquad
Parallel - \qquad lines that are the \qquad distance apart and ___ meet

Perpendicular - a \qquad that \qquad another line and forms a \qquad angle

Adjacent - when a line is \qquad another line

Rectangle

Attributes:

Examples:

Rhombus

Attributes:

- A ___ sided shape
- All \qquad sides are \qquad (equal)
\bullet
sides are \qquad
- ___ pair of ___ sides
-

angles are \qquad

- Also known as a \qquad and \qquad

Examples:

Square

Attributes:

- A \qquad sided shape
- All \qquad sides are \qquad (equal)
\qquad sides are
\qquad pair of \qquad sides
- 4 \qquad angles that measure \qquad
- Also known as a \qquad
\qquad and \qquad

Example:

Parallelogram

Attributes:

- A \qquad sided shape
\qquad sides are \qquad (equal)
\bullet \qquad angles are \qquad (equal)
\qquad pair of \qquad sides

Example:

Trapezoid

Attributes:

- A ___ sided shape
- ___ pair of \qquad sides

Examples:

Kite

Attributes:

- A ___ sided shape
- 2 pair of \qquad and \qquad sides
- One pair of \qquad angles that are

Examples:

Quadrilateral Match Activity

Google Slides Activity

Problem Set

1.

2.

3.

4.

5.

6.

\qquad
7.

8.

9.

Application Problem

Beysean drew a quadrilateral with no right angles. One pair of opposite sides in this quadrilateral was parallel and measured 5 centimeters.
The other pair of opposite sides was parallel and measured 3 centimeters. What type of figure did Beysean draw?

Answer: \qquad

Exit Ticket

Label each picture with the correct quadrilateral. Use the word bank below to correctly identify each quadrilateral.

Name: \qquad Week 31 Day 2 Date: \qquad
BCCS-Boys Stanford MIT

Do Now

Solve the following questions.

Which shape always has 4 congruent sides?
A. parallelogram
B. rectangle
C. rhombus
D. trapezoid

Ursula drew in which all the angles were obtuse. What kind of polygon could she have drawn?
A. trapezoid
B. parallelogram
C. triangle
D. pentagon

Input Activity
 Quadrilateral Nearpod Activity

Nearpod Code \qquad

Problem Set

Write the name of each quadrilateral.
a.

b.

c.

d.

e.

f.

Application Problem:

Maria drew a rectangle. Which other shape could her rectangle be called?

Answer

\qquad

Exit Ticket

A square and a rhombus are shown below.

Which attribute is true of one of the shapes but not of both?

A All angles are right angles.
B All sides are the same length.
C There are two sets of equal angles.
D There are two sets of parallel sides.

Name: \qquad
BCCS-Boys Week 31 Day 3 Date: \qquad
Stanford MIT

Do Now

Find the volume of the figures.

L: \qquad cm

W: \qquad cm

H: \qquad cm

Volume: \qquad cm^{3}

L: \qquad cm

W: \qquad cm

H: \qquad cm

Volume: \qquad cm^{3}

Input Activity:

Problem 1

James has a rectangular shaped room. He measures it and finds out it is $4 \frac{1}{2}$ feet long by $2 \frac{4}{5}$ feet wide. He wants to cover his entire room with black paint. How many square feet of black paint will he need to cover the whole room?

Answer \qquad ft^{2}

Problem 2

Tyron is constructing a box in the shape of a rectangular prism to store his baseball cards. It has a length of 10 centimeters, a width of 7 centimeters, and a height of 8 centimeters. What is the volume of the box?

Answer \qquad cm^{3}

Problem 3

A rectangular prism has a top face with an area of $20 \mathrm{ft}^{2}$ and a height of 5 ft . What is the volume of this rectangular prism?

Answer \qquad ft^{3}

Problem 4

Mrs. Jones is constructing a box in the shape of a rectangular prism to store clothes for the summer. It has a length of 20 inches, a width of 24 inches, and a height of 30 inches. What is the volume of the box?
\qquad $i n^{3}$

Problem 5

Calculate the volume of each rectangular prism using the information that is provided.
a. Area: 56 square meters
b. Height: 4 meters

Answer ___m ${ }^{3}$

Problem 6

At the Middleton School festival, a tent covers a rectangular space $3 \frac{1}{2}$ yards long and $5 \frac{1}{3}$ yards wide. What is the area, in square yards, covered by the tent?
\qquad $y d s^{2}$

Problem 7

A rectangular tank measures 30 cm by 20 cm by 40 cm . What is the volume of the tank?

Answer \qquad cm^{3}

Problem 8

A small fish tank is filled to the top with water. If the tank measures 15 cm by 10 cm by 10 cm , what is the volume of water in the tank?

Problem 9

Find the area of a rectangle $1 \frac{1}{2}$ inches $\times 3 \frac{3}{4}$ inches.

Answer \qquad $i n^{2}$

Problem 10

Find the area of a rectangle $\frac{2}{3} \mathrm{~m} \times \frac{6}{8} \mathrm{~m}$.
\qquad m^{2}

Problem Set

1. A rectangular fish tank measures 26 cm by 20 cm by 5 cm . What is the volume of the fish tank?

Answer \qquad cm^{3}
2. Find the area of the following rectangle.

$$
3 \frac{1}{2} \mathrm{~m} \times 1 \frac{1}{3} \mathrm{~m}
$$

\qquad m^{2}

Application Problem:

A decorative wooden piece is made up of four rectangles as shown below. The smallest rectangle measures $\frac{1}{2}$ inches by $\frac{3}{4}$ inches. If $\frac{1}{4}$ inches are added to each dimension as the rectangles get larger, what is the total area of the entire piece?

Exit Ticket

1. Find the volume of the rectangular fish tank in inches.

Volume: \qquad i^{3}
2. John is designing a board game. The dimensions of the board game are $1 \frac{1}{2}$ inches by $2 \frac{1}{6}$ inches. What is the area of his board game?

Area: \qquad $i n^{2}$

Name: \qquad
BCCS-Boys

Week 31 Day 4 Date:
Stanford MIT

Do Now

Find each volume:

Review for End of Mod Assessment

Problem 1

Aaron used cubes to make the right rectangular prism below.

He then made a smaller right rectangular prism using $\frac{1}{6}$ of the number of cubes. What was the volume, in cubic inches, of the smaller right rectangular prism?

Volume: \qquad $i n^{3}$

Problem 2

Mr. Smith is constructing a toy box in the shape of a rectangular prism to store his baby's toys. It has a length of 30 inches, a width of 22 inches, and a height of 15 inches. What is the volume of the box?

The volume of the toy box is \qquad $i n^{3}$.

Problem 3

A rectangular prism has a top face with an area of $20 \mathrm{ft}^{2}$ and a height of 5 ft . What is the volume of this rectangular prism?

The volume if the rectangular prism is \qquad ft^{3}.

Problem 4

Which model shows one way to determine the area of a rectangle that is $\frac{2}{7}$ foot long and $\frac{3}{4}$ foot wide?
A.

C.

B.

D.

Problem 5

A candle manufacturer is putting candles into small boxes and then packing the boxes into a shipping box, as shown below. He has filled the bottom layer of the shipping box with 14 smaller boxes. He then stacked 2 more on top of the bottom layer. What is the total volume, in cubic units, of the shipping box?

Volume: \qquad cubic units

Problem 6

Which type of quadrilateral can have exactly 1 pair of parallel sides?
A. rectangle
B. rhombus
C. square
D. trapezoid

Problem 7

The two right rectangular prisms below have different volumes.

What is the total volume in cubic feet, of the two prisms?

Answer \qquad cubic feet

What is the difference, in volume, in cubic feet, of the two volumes?
\qquad cubic feet

Problem 8

Chris is making a tabletop from some leftover tiles. His square tabletop measures $\frac{3}{4}$ inches wide. What is the area he can cover with these tiles?

Area $=$ \qquad

Problem 9

Which type of quadrilaterals always has four right angles?
A. trapezoid and square
B. rectangle and rhombus
C. rhombus and parallelogram
D. square and rectangle

Problem 10

Abdul used unit cubes to build a right rectangular prism with a volume of 48 cubic units. The height of the prism was 4 unit cubes. Which figure could be the bottom layer of the prism?
A.

Problem 11

Which of these figures is not a quadrilateral?
A. rectangle
B. trapezoid
C. octagon
D. rhombus

Problem 12

The following figure is made up of unit cubes.

How many unit cubes need to be added to the figure so that it will have a total volume of 32 cubic units?

Answer: \qquad cubes

Name: \qquad
BCCS-Boys Week 31 Day 5 Date: \qquad
Stanford MIT

Module 5 End Module SPA Assessment

Directions: Make sure to show all your work and complete each part. Good luck! ©

Part I: Multiple Choice

1. What is the volume, in cubic centimeters, of the figure below? (5.MD.4)

$\square=1$ cubic centimeter
A. 15
B. 24
C. 30
D. 45
2. Which type of quadrilateral always has four right angles? (5.G.3)
A. kite
B. rectangle
C. rhombus
D. trapezoid
3. Rashad is filling a toy box that are each a unit cube in size. He filled the bottom layer of the toy box with 15 wooden blocks. He then stacked two more wooden blocks on top of the bottom layer. The partially filled toy box is shown below. (5.MD.5a)

What is the total volume, in cubic units, of the toy box?
A. 15
B. 17
C. 30
D. 45
4. A swimming pool is shaped like a right rectangular prism. The pool is 36 feet long and 20 feet wide. What is the total amount of water, in cubic feet, needed to fill the pool to a depth of 4 feet? (5.MD.5b)
A. 800
B. 864
C. 2,880
D. 5,760
5. Which type of quadrilateral can have exactly 1 pair of parallel sides? (5.G.3)
A. rectangle
B. rhombus
C. square
D. trapezoid
6. In his math class Clark used unit cubes to build a right rectangular prism with a volume of 24 cubic units. The height of the prism was two units. Which figure could be the bottom layer of the prism? (5.MD.3a)

B

C

D

7. Which model shows one way to determine the area of a rectangle that is $\frac{7}{10}$ meter long and $\frac{3}{5}$ meter wide? (5.NF.4a)

\qquad 8. Which of these figures is a quadrilateral? (5.G.3)
A. triangle
B. trapezoid
C. octagon
D. pentagon
9. The figure below is made of unit cubes. (5.MD.4)

How many unit cubes need to be added to the figure so that it will have a total volume of 12 cubic units?
A. 1
B. 2
C. 4
D. 8
10. What is the area of the square below? (5.NF.4a)

A. $\frac{1}{8}$ square inch
B. $\frac{1}{2}$ square inch
C. $\frac{1}{4}$ square inch
D. 1 square inch
11. Jack used cubes to make the right rectangular prism below. (5.MD.5a)

He then made a smaller right rectangular prism using $\frac{1}{4}$ of the number of cubes. What was the volume, in cubic inches, of the smaller right rectangular prism?
A. 8
B. 13
C. 16
D. 64
12. The area of a rectangular prism is $240 \mathrm{in}^{2}$. If the height is 9 in, what is the volume? (5.MD.5b)

The volume is \qquad $i n^{3}$.
13. What is the area, in square inches, of a rectangle with the dimensions shown in the diagram below? (5.NF.4a)

The area is \qquad $i n^{2}$.
14. The two right rectangular prisms below have different volumes. (5.MD.5a)

Find the volume of each prism.
$A=$ \qquad cubic feet
$B=$ \qquad cubic feet

What is the difference, in volume, in cubic feet, of the two volumes?

Answer \qquad cubic feet

