No school Monday:) Just a reminder :)

$$
\begin{aligned}
& \text { ELA- Separate } \\
& \text { Packet at END }
\end{aligned}
$$

- This syllable ends with a single vowel. The

Dvowel is "open and free" to say its name for as long as it wants.

Examples: we

$$
\begin{aligned}
& \text { go } \\
& \text { she } \\
& \text { (ii- on } \\
& \text { (cu) - cum - ber }
\end{aligned}
$$

\qquad
\qquad

closed and open syllable sort

$C L O S E D S Y L L A B L E S$	$O P E N S Y L \perp A B L E S$

pet	crab	gray	cry	she	jog
bus	revise	zero	hit	hop	hope
mop	mope	cat	Cate	lap	hit

$\begin{array}{r} 12 \\ +\quad 1 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ -7 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ -6 \\ \hline \end{array}$	$\begin{array}{r} 2 \\ -2 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ +\quad 9 \\ \hline \end{array}$
$\begin{array}{r} 1 \\ +\quad 9 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ +\quad 8 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ -\quad 5 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ -\quad 8 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ -\quad 3 \\ \hline \end{array}$
$\begin{array}{r} 4 \\ +\quad 0 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ -\quad 6 \\ \hline \end{array}$	$\begin{array}{r} 2 \\ +\quad 2 \\ \hline \end{array}$	$\begin{array}{r} 2 \\ -22 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ -\quad 2 \\ \hline \end{array}$
$\begin{array}{r} 11 \\ -8 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ -9 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ -8 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ +7 \\ \hline \end{array}$	$\begin{array}{r} 1 \\ +10 \\ \hline \end{array}$
$\begin{array}{r} 5 \\ -1 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ +\quad 1 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ -\quad 5 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ +6 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ -\quad 3 \\ \hline \end{array}$
$\begin{array}{r} 8 \\ -6 \\ \hline \end{array}$	$\begin{array}{r} 3 \\ +\quad 9 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ -2 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ +\quad 8 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ -1 \\ \hline \end{array}$
$\begin{array}{r} 8 \\ -5 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ -\quad 3 \\ \hline \end{array}$	$\begin{array}{r} 4 \\ -4 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ +\quad 8 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ +\quad 6 \\ \hline \end{array}$
$\begin{array}{r} 5 \\ +3 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ -\quad 3 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ +10 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ -\quad 6 \\ \hline \end{array}$	$\begin{array}{r} 4 \\ +\quad 9 \\ \hline \end{array}$

Seven students sit on one side of a lunch table. Seven more students sit across from them on the other side of the table. How many students are there in total on the table if three more students sit down on each side of the table?

Check off each thing:

- Read the question.
- Re-Read the question.
- How many students sit on one side at first?
- How many students sit across?
- How many MORE students come and sit down all together?
- What is the question asking you?

0

Here are 10 tiles in a row!

Let's draw it another way!

c. Write a repeated addition equation ito match the new array.

Let's draw it another way!
c. Write a repeated addition equation ito match the new array.

Name \qquad Date \qquad
Use your square tiles to construct the following arrays with no gaps or overlaps. Write a repeated addition equation to match each construction.

1. a. Place 8 square tiles in a row.

b. Construct an array with the 8 square tiles.

c. Write a repeated addition equation to match the new array.
2. a. Construct an array with 12 squares.

a. Write a repeated addition equation to match the array.
c. Rearrange the 12 squares into a different array.

d. Write a repeated addition equation to match the new array.
3. a. Construct an array with 20 squares.

b. Write a repeated addition equation to match the array.
c. Rearrange the 20 squares into a different array.

d. Write a repeated addition equation to match the new array.
4. Construct 2 arrays with 6 squares.
a. 2 rows of \qquad $=$ \qquad
b. 3 rows of $=2$ rows of \qquad

5. Construct 2 arrays with 10 squares.
a. 2 rows of \qquad $=$ \qquad
b. 5 rows of \qquad $=2$ rows of \qquad

Name \qquad Date \qquad
a. Construct an array with 12 square tiles.

b. Write a repeated addition equation to match the array.

1) $31 \varphi+24 \varphi=$
2) $43 \epsilon-2 \varphi=$
3) $49 t+25 \phi=$ \qquad
4) $22 ¢-18 ¢=$
5) $81 c-48 \downarrow=$ \qquad 6) $87 t+75 t=$ \qquad
6) $60 ¢+71 ¢=$ \qquad 8) $82 \epsilon-49 \psi=$
7) $66 c+5 c=$ \qquad
8) $93 c-85 t=$ \qquad 11) $7 t+23 t=$ \qquad 12) $83 c-31 q=$ \qquad
9) $73 c+15 q=$ \qquad
10) $62 c+96 q=$ \qquad

Wednesday, June 2nd

Sorting Mat

Open \& Closed Syllable Cards

Directions:

Cut each syllable card on the dotted lines. Sort into these 2 categories: open and closed syllables.

$10+7=\square \quad 11+3=\square \quad 10-7=\square \quad 10-2=\square \quad 3+0=\square$
$3+5=\square \quad 5 \cdot 3=\square \quad 9 \cdot 5=\square \quad 4-3=\square \quad 3+7=\square$
$10+10=\square$
$8+8=\square$
$7+2=\square$
$9+6=\square$
$10-6=\square$
$9-1=\square$
$7+2=\square$
$10+11=\square$
$11-7=\square$
$11-7=\square$
$7+12=\square$
$9+3=\square$
$10-6=\square$
$11+3=\square$
$4-2=\square$
$9-8=\square$
$8-5=\square$
$6+5=\square$
$7-3=\square$
$9-9=\square$
$12 \cdot 6=\square$
$4+9=\square$
$9+4=\square$
$2+11=\square$
$8+6=$ \square
$2+8=\square$
$2-1=\square$
$11-4=\square$
$12-7=\square$
$7+0=\square$

Day 3Q: Read the word problem: (M6 L17)
Yesterday our table only had 2 sides. What if our table was a square?
There are 3 students on each side. How many students are there at the table today?

Check off each thing:

- Read the question.
- Re-Read the question.
- How many students sit on one side? \qquad
- How many sides?
- What is the question asking you?
- Let's draw a diagram to help us and solve this problem!

Name Date \qquad

1. Draw without using a square tile to make an array with 2 rows of 5 .

2 rows of $5=$ \qquad
\qquad $+$ \qquad $=$ \qquad
2. Draw without using a square tile to make an array with 4 columns of 3 .

4 columns of $3=$ \qquad
\qquad
\qquad
\qquad $+$ \qquad
\qquad
3. Complete the following arrays without gaps or overlaps. The first tile has been drawn for you.
a. 3 rows of 4

b. 5 columns of 3

c. 5 columns of 4

Name

Date \qquad

1. Cut out and trace the square tile to draw an array with 2 rows of 4 .

2 rows of $4=$ \qquad
\qquad $+$ \qquad $=$ \qquad
2. Trace the square tile to make an array with 3 columns of 5 .

3 columns of $5=$ \qquad
\qquad $+$ \qquad + \qquad $=$ \qquad
3. Complete the following arrays without gaps or overlaps. The first tile has been drawn for you.
a. 4 rows of 5

b. 5 columns of 2

c. 4 columns of 3

Name

 Date \qquadDraw an array of 3 columns of 3 starting with the square below without gaps or overlaps.

1) $\$ 1+56 ¢=$
2) $57 ¢+28 ¢=$
3) $77 ¢-68 ¢=$
4) $75 \varphi-6 \epsilon=$
5) $92 ¢-36 ¢=$
6) $996+97 \%=$
7) $60 ¢+63 ¢=$
8) $90 ¢-20 ¢=$
9) $88 \epsilon-12 \phi=$ \qquad 12) $59 c+65 ¢=$ \qquad
10) $27 ¢-23 ¢=$ \qquad
11) $31 c+7 ¢=$ \qquad
12) $18 c+37 ¢=$ \qquad

Thursday, June 3rd

Open \& Closed Syllable Sort Recording Sheet

Name: \qquad Date: \qquad
Directions: Read and sort the syllable cards. Then record your answers in the columns below.

Open \& Closed Syllable Cards

Directions:

Read each syllable card
Sort into these 2 categories: open and closed syllables.

$\begin{array}{r} 4 \\ +\quad 2 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ -1 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ -6 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ -9 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ +\quad 5 \\ \hline \end{array}$
$\begin{array}{r} 4 \\ +9 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ -4 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ +\quad 6 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ -7 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ -\quad 3 \\ \hline \end{array}$
$\begin{array}{r} 12 \\ -\quad 9 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ +6 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ -\quad 5 \\ \hline \end{array}$	$\begin{array}{r} 3 \\ +\quad 5 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ +\quad 0 \\ \hline \end{array}$
$\begin{array}{r} 6 \\ +0 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ +\quad 9 \\ \hline \end{array}$	$\begin{array}{r} 3 \\ -2 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ -7 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ -1 \\ \hline \end{array}$
$\begin{array}{r} 4 \\ +\quad 3 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ -\quad 0 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ -7 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ -\quad 3 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ +2 \\ \hline \end{array}$
$\begin{array}{r} 3 \\ +\quad 4 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ -\quad 3 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ -3 \\ \hline \end{array}$	$\begin{array}{r} 3 \\ +6 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ -7 \\ \hline \end{array}$
$\begin{array}{r} 11 \\ +\quad 2 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ -7 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ -\quad 5 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ +9 \\ \hline \end{array}$	$\begin{array}{r} 2 \\ +10 \\ \hline \end{array}$
$\begin{array}{r} 3 \\ -2 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ -2 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ +9 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ +\quad 9 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ +\quad 3 \\ \hline \end{array}$

Day 4Q: Read the word problem: (M6 L17)
Yesterday our table only had 2 sides. What if our table was a square?
There are 3 students on each side. 1 more student comes and sits on each side. How many students are there at the table today?

Check off each thing:

- Read the question.
- Re-Read the question.
- How many students sit on one side?
- How many sides?
- What is the question asking you?
- Let's draw a diagram to help us and solve this problem!

Concept Development:

1. Below is an array with tiles that is 4 rows of 5

2. This is an array of \qquad columns of \qquad

Draw the decomposed equal parts in this rectangle:

3. Here is an array with 16 apples.

a. How many rows are there?
b. How many apples are in each row?
c. What is the repeated addition sentence for this array of apples?
d. What do 4 rows of 4 equal? \qquad
e. To the array above: cross out a ROW.

NOW with the new array of apples answer the questions:
f. What is the NEW total for the array? \qquad
9. What is the repeated addition sentence now?
h. to the NEW array above: cross out a COLUMN
i. What is the NEW total for the array? \qquad
j. What is the repeated addition sentence now?

Now create an array with 12 stars below.

e. To the array above: cross out a ROW.

NOW with the new array of stars answer the questions:
f. What is the NEW total for the array?
g. What is the repeated addition sentence now?
h. to the NEW array above: cross out a COLUMN
i. What is the NEW total for the array?
j. What is the repeated addition sentence now?

Problem set

Problem 1

Step 1: Construct a rectangle with 4 columns of 3.

Step 2: Separate 2 columns of 3 with a thick dark line!

Step 3: Write a number bond to show the whole and two parts.
Step 4: Then, write a repeated addition sentence to match each part of the number bond.

Problem 2
Step 1: Construct a rectangle with 5 rows of 2.

Step 2: Separate 2 rows of 2 with a thick dark line!

Step 3: Write a number bond to show the whole and two parts.
Step 4: Write a repeated addition sentence to match each part of the number bond.

Problem 3

Step 1: Construct a rectangle with 5 columns of 3 .

Step 2: Separate 3 columns of 3 with a thick dark line.

Step 3: Write a number bond to show the whole and two parts.
Step 4: Write a repeated addition sentence to match each part of the number bond.
4. Use 12 square tiles to construct a rectangle with 3 rows.

a. \qquad rows of \qquad $=12$
b. Remove 1 now. How many squares are there now? \qquad
c. Remove 1 column from the new rectangle you made in $4(\mathrm{~b})$. How many squares are there now? \qquad
6. Use 16 square tiles to construct a rectangle.

a. \qquad rows of \qquad $=$ \qquad
b. Remove 1 row. How many squares are there now? \qquad
c. Remove 1 column from the new rectangle you made in 6 (b). How many squares are there now? \qquad

1) $18 q+24 \psi=$
2) $31 \epsilon+88 \phi=$ \qquad 3) $76 q-29 q=$
3) $8 \phi-6 \phi=$ \qquad
4) $53 t+63 \uparrow=$ \qquad
5) $53 \phi+63 \phi=$ \qquad
6) $42 \phi-26 \phi=$
7) $81 c-8 ¢=$
8) $67 ¢+98 \phi=$ \qquad
\qquad
9) $63 c-4 ¢=$ \qquad
10) $2 \varphi+51 \varphi=$

Friday, June 4th
$6 \cdot 3=\square$
$4-0=\square$
$9-5=\square$
$12+9=\square$
$8-7=\square$
$11+7=\square$
$3+6=\square$
$10 \cdot 6=\square$
$1+5=\square$
$7+4=\square$
$9-1=\square$
$1-0=\square$
$10-9=\square$
$8+2=\square$
$8-5=\square$
$8+4=\square$
$5+9=\square$
$7-1=\square$
$11-2=\square$
$8-3=\square$
$2+4=\square$
$5+0=\square$
$2+2=\square$
$10-6=\square$
$12+5=\square$
$4+2=\square$
$6-2=\square$
$7+9=\square$
$4+2=\square$
$10-6=\square$
$3+0=\square$
$9+3=\square$
$7+1=\square$
$10-8=\square$
$11-4=\square$
$3-1=\square$
$5-3=\square$
$7-4=\square$
$10+3=\square$
$2+6=\square$

Concept development:

1. Shade in an array with 5 rows of 3 .

2. Shade in an array with 2 rows of 3 .

3. Shade in an array with 4 rows of 6 .

Write a repeated addition equation for the array.

Write a repeated addition equation for the array.
4. Draw one more column of 2 to make a new array.

Write a repeated addition equation for the new array.
5. Draw one more row of 3 and then one more column to make a new array.

> Write a repeated addition equation for the new array.
6. Draw two more rows and then one more column to make a new array.

Write a repeated addition equation for the new array.

Name \qquad Date \qquad

1. Shade in an array with 2 rows of 3 .

Write a repeated addition equation for the array.
2. Shade in an array with 4 rows of 3 .

Write a repeated addition equation for the array.
3. Shade in an array with 5 columns of 4.

Write a repeated addition equation for the array.
4. Draw one more column of 2 to make a new array.

Write a repeated addition equation for the new array.
5. Draw one more row of 4 and then one more column to make a new array.

Write a repeated addition equation for the new array.
6. Draw one more row and then two more columns to make a new array.

> Write a repeated addition equation for the new array.

Name
Shade in an array with 3 rows of 5 .

Write a repeated addition equation for the array.

1) $12 \phi-5 \phi=$ \qquad 2) $44 \varphi+14 \varphi=$ \qquad 3) $74 ¢+39 \nmid=$ \qquad
2) $93 q-83 q=$ \qquad
3) $74 c-62 \phi=$
\qquad 9) $61 c+18 ¢=$ \qquad
4) $72 \varphi+85 \psi=$ \qquad
—
5) $6 \phi+7 \phi=$ \qquad
6) $7 ¢+46 ¢=$ \qquad 11) $94 \epsilon-17 ¢=$ \qquad 12) $95 ¢-43 \phi=$ \qquad
7) $48 c+46 q=$ \qquad 14) $60 c-16 \phi=$ \qquad 15) $45 c-44 \nmid=$ \qquad

Barnard College	Columbia University	New York University
Ms. Park	Ms. Hildebrand	Ms. Severino

	$* \quad$ "What dangers do pollinators face?"
	$*$
	"Why should people protect pollinators?"

What is one way that people can help butterflies?

Wildflower Seed Packet Writing Piece

Name: \qquad Date: \qquad

Introduction	Why should we help butterflies?
Reason 1 (independent-chosen from class notes)	
Reason 2 (independent-chosen from class notes)	
Call to Action	

Barnard College	Columbia University	New York University
Ms. Park	Ms. Hildebrand	Ms. Severino

Close Reading

6/1-6/4

Name:

Fix Our Playgrounds

Read the letter to the editor.

Then follow the directions in the Text Marking box.

To the Editor:

I think our playgrounds are amazing. They help kids enjoy fresh air, friends, and fun. But not all are safe. I believe it is very important to make them so.

First off, playgrounds must have safer surfaces than hard cement. That is because falls are the most common playground accidents. Rubber or sand are good choices. We should also fix broken equipment to avoid danger.

But my opinion is that the most important thing to do is to have adults watching all the

Playground with a soft surface

Text Marking

Identify the facts and opinions in the letter.

Draw boxes around three signal words.

Circle two facts.

Underline three opinions.
 \qquad

 time. Adults can teach rules for playground safety. No shoving and no pushing are two examples. They can have kids take off scarves or necklaces. That is because these can get caught on equipment. Plus, adults would be there to help if something goes wrong.Safety must come first.
Ellie Chang, Taos, NM

Fix Our Playgrounds

Answer each question. Give details from the letter to the editor.
(1) The author talks about fixing "broken equipment to avoid danger." When you avoid something, you are trying to \qquad .

A. keep away from it
C. make it safer
B. make it happen
D. repeat it

What helped you answer? \qquad

2 Which does the author say causes most playground injuries?
A. broken equipment
C. bad weather
B. wearing scarves
D. falling

What helped you answer? \qquad
\qquad
(3) Explain the author's opinion of pushing and shoving.
(4) Look back at your markings. What does the author believe is the best way to make playgrounds safer?

